7 resultados para Animal signaling and communication

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Homozygous loss of function mutations in interleukin-10 (IL10) and interleukin-10 receptors (IL10R) cause severe infantile (very early onset) inflammatory bowel disease (IBD). Allogeneic hematopoietic stem cell transplantation (HSCT) was reported to induce sustained remission in 1 patient with IL-10R deficiency. We investigated heterogeneity among patients with very early onset IBD, its mechanisms, and the use of allogeneic HSCT to treat this disorder. METHODS: We analyzed 66 patients with early onset IBD (younger than 5 years of age) for mutations in the genes encoding IL-10, IL-10R1, and IL-10R2. IL-10R deficiency was confirmed by functional assays on patients' peripheral blood mononuclear cells (immunoblot and enzyme-linked immunosorbent assay analyses). We assessed the therapeutic effects of standardized allogeneic HSCT. RESULTS: Using a candidate gene sequencing approach, we identified 16 patients with IL-10 or IL-10R deficiency: 3 patients had mutations in IL-10, 5 had mutations in IL-10R1, and 8 had mutations in IL-10R2. Refractory colitis became manifest in all patients within the first 3 months of life and was associated with perianal disease (16 of 16 patients). Extraintestinal symptoms included folliculitis (11 of 16) and arthritis (4 of 16). Allogeneic HSCT was performed in 5 patients and induced sustained clinical remission with a median follow-up time of 2 years. In vitro experiments confirmed reconstitution of IL-10R-mediated signaling in all patients who received the transplant. CONCLUSIONS: We identified loss of function mutations in IL-10 and IL-10R in patients with very early onset IBD. These findings indicate that infantile IBD patients with perianal disease should be screened for IL-10 and IL-10R deficiency and that allogeneic HSCT can induce remission in those with IL-10R deficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several biological events are controlled by Hedgehog (Hh) signaling, including osteoblast phenotype development. This study aimed at evaluating the gene expression profile of human mesenchymal stem cells (hMSCs) treated with the Hh agonist, purmorphamine, focusing on Hh signaling and osteoblast differentiation. hMSCs from bone marrow were cultured in non-osteogenic medium with or without purmorphamine (2 mu M) for periods of up to 14 days. Purmorphamine up-regulated gene expression of the mediators of Hh pathway, SMO, PTCH1, GLI1, and GLI2. The activation of Hh pathway by purmorphamine increased the expression of several genes (e.g., RUNX2 and BMPs) related to osteogenesis. Our results indicated that purmorphamine triggers Hh signaling pathway in hMSCs, inducing an increase in the expression of a set of genes involved in the osteoblast differentiation program. Thus, we conclude that Hh is a crucial pathway in the commitment of undifferentiated cells to the osteoblast lineage. J. Cell. Biochem. 113: 204208, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activation of the transient receptor potential vanilloid type 1 channel (TRPV1) has been correlated with oxidative and nitrosative stress and cell death in the nervous system. Our previous results indicate that TRPV1 activation in the adult retina can lead to constitutive and inducible nitric oxide synthase-dependent protein nitration and apoptosis. In this report, we have investigated the potential effects of TRPV1 channel activation on nitric oxide synthase (NOS) expression and function, and the putative participation of ionotropic glutamate receptors in retinal TRPV1-induced protein nitration, lipid peroxidation, and DNA fragmentation. Intravitreal injections of the classical TRPV1 agonist capsaicin up-regulated the protein expression of the inducible and endothelial NOS isoforms. Using 4,5-diaminofluorescein diacetate for nitric oxide (NO) imaging, we found that capsaicin also increased the production of NO in retinal blood vessels. Processes and perikarya of TRPV1-expressing neurons in the inner nuclear layer of the retina were found in the vicinity of nNOS-positive neurons, but those two proteins did not colocalize. Retinal explants exposed to capsaicin presented high protein nitration, lipid peroxidation, and cell death, which were observed in the inner nuclear and plexiform layers and in ganglion cells. This effect was partially blocked by AP-5, a NMDA glutamate receptor antagonist, but not by CNQX, an AMPA/kainate receptor antagonist. These data support a potential role for TRPV1 channels in physiopathological retinal processes mediated by NO, which at least in part involve glutamate release.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attempts to improve beef tenderness through supplementation with dietary vitamin D-3 have been challenged by null results and negative impacts on animal performance and carcass traits. Because vitamin D-3 is also synthesised by the animal via ultraviolet radiation from sunlight, the effectiveness of supplementation with dietary vitamin D-3 may be modulated by the degree of exposure of the animal to sunlight. Hence, this work aimed to verify whether dietary vitamin D-3 modifies meat quality without negatively affecting animal performance and carcass traits in B. indicus beef cattle that were either exposed to or protected from natural sunlight. Forty-two (411 +/- 38 kg) Nellore-type castrated males were fed a high-concentrate diet for 45 days after assignment to a treatment group. The treatments comprised combinations of three levels of vitamin D3 [ViTD - none (V0) or 2 x 10(6) IU of vitamin D-3 administered for either 2 (V2) or 8 (V8) consecutive days pre-slaughter] and two shading conditions (SHADE - unshaded or shaded). The post-mortem (pm) measurements were taken in the Longissimus thoracis et lumborum muscle. The animal performance and carcass traits were unaffected by ViTD or SHADE The V2 treatment increased the Myofibrillar Fragmentation Index in shaded animals compared to unshaded ones. Animals under shade had higher muscle calcium concentration. There was no effect of either ViTD or SHADE on the shear force. The L* values were higher at 24 h pm than at 0 and 1 h pm, with no differences among the animals in the ViTD or SHADE groups. Higher a* values were observed among animals in the V8 group than in the V0 group, and higher b* values were observed among animals in the V8 group than in the V2 or V0 groups, which were not different. In conclusion, ViTD and SHADE did not affect animal performance, carcass traits or shear force, whereas animals receiving a lower ViTD dosage and SHADE exhibited altered myofibrillar fragmentation. ViTD affected the colour parameters, and changes in the lightness of the beef related to the time pm were found in meat from animals under SHADE. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurodegenerative disorders are undoubtedly an increasing problem in the health sciences, given the increase of life expectancy and occasional vicious life style. Despite the fact that the mechanisms of such diseases are far from being completely understood, a large number of studies; that derive from both the basic science and clinical approaches have contributed substantial data in that direction. In this review, it is discussed several frontiers of basic research on Parkinson's and Alzheimer's diseases, in which research groups from three departments of the Institute of Biomedical Sciences of the University of Sao Paulo have been involved in a multidisciplinary effort. The main focus of the review involves the animal models that have been developed to study cellular and molecular aspects of those neurodegenerative diseases, including oxidative stress, insulin signaling and proteomic analyses, among others. We anticipate that this review will help the group determine future directions of joint research in the field and, more importantly, set the level of cooperation we plan to develop in collaboration with colleagues of the Nucleus for Applied Neuroscience Research that are mostly involved with clinical research in the same field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The toxicity of palmitic acid (PA) towards a human T-lymphocyte cell line (Jurkat) has been previously investigated but the mechanism(s) of PA action were unknown. In the current study, Jurkat cells were treated with sub-lethal concentrations of PA (50-150 mu M) and the activity of various signaling proteins was investigated. PA-induced apoptosis and mitochondrial dysfunction in a dose-dependent manner as evaluated by DNA fragmentation assay and depolarization of the mitochondrial membrane, respectively. PA treatment provoked release of cytochrome c from the inner mitochondrial membrane to the cytosol, activated members of the MAPK protein family JNK, p38, ERK, activated caspases 3/9, and increased oxidative/nitrosative stress. Exposure of cells to PA for 12 h increased insulin receptor (IR) and GLUT-4 levels in the plasma membrane. Insulin treatment (10 mU/ml/30 min) increased the phosphorylation of the IR beta-subunit and Akt. A correlation was found between DNA fragmentation and expression levels of both IR and GLUT-4. Similar results were obtained for PA-treated lymphocytes from healthy human donors and from mesenteric lymph nodes of 48-h starved rats. PA stimulated glucose uptake by Jurkat cells (in the absence of insulin), stimulated accumulation of neutral lipids (triglyceride), and other lipid classes (phospholipids and cholesterol ester) but reduced glucose oxidation. Our results suggest that parameters of insulin signaling and non-oxidative glucose metabolism are stimulated as part of a coordinated response to prompt survival in lymphocytes exposed to PA but at higher concentrations, apoptosis prevails. These findings may explain aspects of lymphocyte dysfunction associated with diabetes. J. Cell. Physiol. 227: 339-350, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucose metabolism and insulin signaling disruptions in the brain have been proposed as a likely etiology of Alzheimer's disease. The aim of the present study was to investigate the time course of cognitive impairments induced by intracerebroventricular injection of streptozotocin (STZ) in rats and correlate them with the ensuing neurodegenerative process. Early and late effects of STZ were evaluated by using the reference and working memory versions of the Morris' water maze task and the evaluation of neurodegenerative markers by immunoblotting and the Fluoro-jade C histochemistry. The results revealed different types of behavioral and neurodegenerative responses, with distinct time courses. We observed an early disruption on the working memory as early as 3 h after STZ injections, which was followed by degenerative processes in the hippocampus at 1 and 15 days after STZ injections. Memory disruption increases over time and culminates with significant changes in amyloid-beta peptide and hyperphosphorylated Tau protein levels in distinct brain structures. These findings add information on the Alzheimer's disease-like STZ animal model and on the mechanisms underlying neurodegenerative processes. (C) 2012 Elsevier Inc. All rights reserved.