3 resultados para Anaplasma Marginale
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In the present study, the presence of tick-associated bacteria and protozoa in Ornithodoros rostratus ticks (adults, nymphs, and eggs) from the Pantanal region of Brazil were determined by molecular detection. In these ticks, DNA from protozoa in the genera Babesia and Hepatozoon, and bacteria from the genera Rickettsia, Borrelia, Anaplasma, and Ehrlichia were not detected. Conversely, all tested ticks (100%) yielded PCR products for 3 Coxiella genes (16S rRNA, pyrG, cap). PCR and phylogenetic analysis of 3 amplified genes (16S rRNA, pyrG, cap) demonstrated that the agent infecting O. rostratus ticks was a member of the genus Coxiella. This organism grouped with Coxiella symbionts of other soft tick species (Argasidae), having different isolates of C. burnetii as a sister group, and these 2 groups formed a clade that grouped with another clade containing Coxiella symbionts of hard tick species (Ixodidae). Analysis of tick mitochondrial 16S rRNA gene database composed mostly of tick species previously shown to harbor Coxiella symbionts suggests a phylogenetic congruence of ticks and their Coxiella symbionts. Furthermore, these results suggest a very long period of coevolution between ticks and Coxiella symbionts and indicates that the original infection may have occurred in an ancestor common to the 2 main tick families, Argasidae (soft ticks) and Ixodidae (hard ticks). However, this evolutionary relationship must be confirmed by more extensive testing of additional tick species and expanded populations. (c) 2012 Elsevier GmbH. All rights reserved.
Resumo:
The aim of the current study was to investigate the exposure of captive wild felids to various infectious pathogens using serological and molecular methods. One hundred and fifty-nine neotropic felids and 51 exotic felids from 28 captive settings in Brazil were tested. While antibodies against Feline parvovirus and Feline coronavirus (FCoV), Feline calicivirus and Bartonella spp. were frequently detected by serologic tests, antibodies against Felid herpesvirus 1 or infection with hemotropic mycoplasmas were less prevalent. Serologic evidence of exposure to Ehrlichia spp., Feline immunodeficiency virus, and Feline leukemia virus (FeLV) was detected rarely, and infections with FeLV, Ehrlichia spp., and Cytauxzoon spp. were found infrequently. The detected Bartonella sequence was molecularly similar to B. koehlerae and B. henselae; for Cytauxzoon, the sequence resembled those from domestic cats. No Anaplasma phagocytophilum and Theileria spp. infections were detected. The positive test results varied significantly among different facilities and species. Additionally, FCoV seropositivity was more prevalent in captivity than in free-ranging populations. Results suggest that testing is appropriate prior to relocation of felids.
Resumo:
The bat tick Ornithodoros mimon Kohls, Clifford & Jones is currently known by only few reports in Bolivia, Uruguay, Argentina, and the state of São Paulo in southeastern Brazil. Here, we expand the distribution of O. mimon in Brazil to the states of Minas Gerais (southeastern region), Goiás (central-western), Pernambuco, and Rio Grande do Norte (northeastern). Ticks were collected on human dwellings, where there had been repeated complains of tick bites on persons during the night. Tick bites were generally followed by intense inflammatory reactions that lasted for several weeks at the bite site. Bats and opossums were reported to inhabit the attic of the infested houses. In addition, a free-ranging opossum (Didelphis albiventris Lund) trapped in Rio Grande do Norte was found infested by argasid larvae. Based on morphological and/or molecular analysis, all ticks were identified as O. mimon. From one of the sites (Tiradentes, state of Minas Gerais), 20 field-collected nymphs were tested by a battery of polymerase chain reaction protocols targeting tick-borne microorganisms of the genera Babesia, Hepatozoon, Rickettsia, Borrelia, Anaplasma, Ehrlichia, and Coxiella; no tick specimen was found infected by any of these microorganism genera. The current study expands northwards the distribution of O. mimon, which has been shown to be very harmful to humans because of the intense inflammatory response that usually occurs after tick bites.