2 resultados para Amylase production

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strain ST211CH, identified as a strain of Enterococcus faecium, isolated from Lombo produced a bacteriocin that inhibited the growth of Enterococcus spp., Listeria spp., Klebsiella spp., Lactobacillus spp., Pseudomonas spp., Staphylococcus spp. and Streptococcus spp. The mode of action of the bacteriocin named as bacteriocin ST211Ch was bactericidal against Enterococcus faecalis ATCC19443. As determined by Tricine-SDS-PAGE, the approximate molecular mass of the bacteriocin was 8.0 kDa. Loss in antimicrobial activity was recorded after treatment with proteolytic enzymes. Maximum activity of bacteriocin ST211Ch was measured in broth cultures of E. faecium strain ST211Ch after 24 h; thereafter, the activity was reduced. Bacteriocin ST211Ch remained active after exposure to various temperatures and pHs, as well as to Triton X-100, Tween-80, Tween-20, sodium dodecyl sulfate, NaCl, urea and EDTA. Effect of media components on production of bacteriocin ST211Ch was also studied. On the basis of PCR reactions targeting different bacteriocin genes, i.e. enterocins, curvacins and sakacins, no evidences for the presence of these genes in the total DNA of E. faecium strain ST211Ch was obtained. The bacterium most probably produced a bacteriocin different from those mentioned above. Based on the antimicrobial spectrum, stability and mode of action of bacteriocin ST211CH, E. faecium strain ST211Ch might be considered as a potential candidate with beneficial properties for use in biopreservation to control food spoilage bacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aspergillus phoenicis is an interesting heat tolerant fungus that can synthesize enzymes with several applications in the food industry due to its great hydrolytic potential. In this work, the fungus produced high enzymatic levels when cultivated on inexpensive culture media consisting of flakes from different origins such as cassava flour, wheat fibre, crushed soybean, agro-industrial wastes, starch, glucose or maltose. Several enzymatic systems were produced from these carbon sources, but amylase was the most evident, followed by pectinase and xylanase. Traces of CMCases, avicelase, lipase, β-xylosidase, β-glucosidase and α-glucosidase activities were also detected. Amylases were produced on rye flakes, starch, oat flakes, corn flakes, cassava flour and wheat fibre. Significant amylolytic levels were produced in the culture medium with glucose or when this sugar was exhausted, suggesting an enzyme in the constitutive form. Cassava flour, rye, oats, barley and corn flakes were also used as substrates in the hydrolytic reactions, aiming to verify the liberation potential of reducing sugars. Corn flakes induced greater liberation of reducing sugars as compared to the others. Thin layer chromatography of the reaction end products showed that the hydrolysis of cassava flour liberated maltooligosaccharides, but cassava flour and corn, rye, oats and barley flakes were hydrolyzed to glucose. These results suggested the presence of glucoamylase and α-amylase as part of the enzymatic pool of A. phoencis.