7 resultados para Amsterdam Mud Volcano
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
During the Ediacaran, southern Brazil was the site of multiple episodes of volcanism and sedimentation, which are best preserved in the 3000 km(2) Camaqua Basin. The interlayered sedimentary and volcanic rocks record tectonic events and paleoenvironmental changes in a more than 10 km-thick succession. In this contribution, we report new U-Pb and Sm-Nd geochronological constraints for the 605 to 580 Ma Born Jardim Group, the 570 Ma Acampamento Velho Formation, and a newly-recognized 544 Ma volcanism. Depositional patterns of these units reveal the transition from a restricted, fault-bounded basin into a wide, shallow basin. The expansion of the basin and diminished subsidence rates are demonstrated by increasing areal distribution and compressed isopachs and increasing onlap of sediments onto the basement to the west. The Sm-Nd isotopic composition of the volcanic rocks indicates mixed sources, including crustal rocks from the adjacent basement. Both Neoproterozoic and Paleoproterozoic sources are indicated for the western part of the basin, whereas only the older Paleoproterozoic signature can be discerned in the eastern part of the basin. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
Along the southern Brazilian coast, Tijucas Bay is known for its unique muddy tidal flats associated with chenier plains. Previous field observations pointed to very high suspended sediment concentrations (SSCs) in the inner parts of the bay, and in the estuary of the Tijucas River, suggesting the presence of fluid mud. In this study, the occurrences of suspended sediments and fluid mud were examined during a larger-scale, high-resolution 2-day field campaign on 1-2 May 2007, encompassing survey lines spanning nearly 80 km, 75 water sampling stations for near-bottom density estimates, and ten sediment sampling stations. Wave refraction modeling provided qualitative wave energy estimates as a function of different incidence directions. The results show that SSC increases toward the inner bay near the water surface, but seaward near the bottom. This suggests that suspended sediment is supplied by the local rivers, in particular the Tijucas. Near-surface SSCs were of the order of 50 mg l(-1) close to the shore, but exceeded 100 mg l(-1) near the bottom in the deeper parts of the bay. Fluid mud thickness and location given by densimetry and echo-sounding agreed in some places, although being mostly discordant. The best agreement was observed where wave energy was high during the campaign. The discrepancy between the two methods may be an indication for the existence of fluid mud, which is recorded by one method but not the other. Agreement is considered to be an indication of fluidization, whereas disagreement indicates more consolidation. Wave modeling suggests that waves from the ENE and SE are the most effective in supplying energy to the inner bay, which may induce the liquefaction of mud deposits to form fluid mud. Nearshore mud resuspension and weak horizontal currents result in sediment-laden offshore flow, which explains the higher SSCs measured in the deeper parts of the bay, besides providing a mechanism for fine-sediment export to the inner shelf.
Resumo:
The main constituents of red mud produced in Aluminio city (S.P., Brazil) are iron, aluminum, and silicon oxides. It has been determined that the average particle diameter for this red mud is between 0.05 and 0.002 mm. It is observed that a decrease in the percentage of smaller particles occurs at temperatures greater than 400 degrees C. This observation corresponds with the thermal analysis and X-ray diffraction (XRD) data, which illustrate the phase transition of goethite to hematite. A 10% mass loss is observed in the thermal analysis patterns due to the hydroxide-oxide phase transitions of iron (primary phase transition) and aluminum (to a lesser extent). The disappearance and appearance of the different phases of iron and aluminum confirms the decomposition reactions proposed by the thermal analysis data. This Brazilian red mud has been classified as mesoporous at all temperatures except between 400 and 500 degrees C where the classification changes to micro/mesoporous.
Resumo:
Final Gondwana amalgamation was marked by the closure of the Neoproterozoic Clymene ocean between the Amazonia craton and central Gondwana. The events which occurred in the last stage of this closure were recorded in the upper Alto Paraguai Group in the foreland of the Paraguay orogen. Outcrop-based fades analysis of the siliciclastic rocks of upper Alto Paraguai Group, composed of the Sepotuba and Diamantino Formations, was carried out in the Diamantino region, within the eastern part of the Barra dos Bugres basin, Mato Grosso state, central-western Brazil. The Sepotuba Formation is composed of sandy shales with planar to wave lamination interbedded with fine-grained sandstone with climbing ripple cross-lamination, planar lamination, swaley cross-stratification and tangential to sigmoidal cross-bedding with mud drapes, related to marine offshore deposits. The lower Diamantino Formation is composed of a monotonous, laterally continuous for hundreds of metres, interbedded siltstone and fine-grained sandstone succession with regular parallel lamination, climbing ripple cross-lamination and ripple-bedding interpreted as distal turbidites. The upper part of this formation consists of fine to medium-grained sandstones with sigmoidal cross-bedding, planar lamination, climbing ripple cross-lamination, symmetrical to asymmetrical and linguoid ripple marks arranged in lobate sand bodies. These fades are interbedded with thick siltstone in coarsening upward large-scale cycles related to a delta system. The Sepotuba Formation characterises the last transgressive deposits of the Paraguay basin representing the final stage of a marine incursion of the Clymene ocean. The progression of orogenesis in the hinterland resulted in the confinement of the Sepotuba sea as a foredeep sub-basin against the edge of the Amazon craton. Turbidites were generated during the deepening of the basin. The successive filling of the basin was associated with progradation of deltaic lobes from the southeast, in a wide lake or a restricted sea that formed after 541 +/- 7 Ma. Southeastern to east dominant Neoproterozoic source regions were confirmed by zircon grains that yielded ages around 600 to 540 Ma, that are interpreted to be from granites in the Paraguay orogen. This overall regressive succession recorded in the Alto Paraguai Group represents the filling up of a foredeep basin after the final amalgamation of westem Gondwana in the earliest Phanerozoic. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
The dynamics, over the last 7500 years, of a mangrove at Marajo Island in northern Brazil were studied by pollen and sedimentary facies analyses using sediment cores. This island, located at the mouth of the Amazon River. is influenced by riverine inflow combined with tidal fluctuations of the equatorial Atlantic Ocean. Herbaceous vegetation intermingled with rainforest dominates the central area of the island, while varzea is the main vegetation type along the littoral. In particular, the modem northeastern coastal zone is covered by a mosaic of dense rainforest, herbaceous vegetation, mangroves, varzea, and restinga. The integration of pollen data and fades descriptions indicates a tidal mud flat colonized by mangroves in the interior of Marajo Island between similar to 7500 cal yr BP and similar to 3200 cal yr BP. During the late Holocene, mangroves retracted to a small area (100-700 m in width) along the northeastern coastal plain. Mangrove expansion during the early and mid Holocene was likely caused by the post-glacial sea-level rise which, combined with tectonic subsidence, led to a rise in tidal water salinity. Salinity must have further increased due to low river discharge resulting from increased aridity during the early and mid Holocene. The shrinking of the area covered by mangrove vegetation during the late Holocene was likely caused by the increase in river discharge during the late Holocene, which has maintained relatively low tidal water salinity in Marajo Island. Tidal water salinity is relatively higher in the northeastern part of the island than in others, due to the southeast-northwest trending current along the littoral. The mixing of marine and riverine freshwater inflows has provided a refuge for mangroves in this area. The increase in flow energy during the last century is related to landward sand migration, which explains the current retraction of mangroves. These changes may indicate an increased exposure to tidal influence driven by the relative sea-level rise, either associated with global fluctuations or tectonic subsidence, and/or by an increase in river water discharge. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The evolution of the structure and properties of Cr/Cr oxide thin films deposited on HK40 steel substrates by reactive magnetron sputtering (RMS) was investigated and linked to their potential protective behavior against metal dusting. Deposition time, mode of oxygen feeding, and application of bias voltage were varied to assess their effect on the density, adhesion, and integrity of the films. All the films showed a very fine columnar microstructure and the presence of amorphous Cr oxide. Both, an increasing time and a constant oxygen flow during deposition led to the development of relatively low density films and mud-like cracking patterns. A graded oxygen flow resulted in films with fewer cracks, but a careful control of the oxygen flow is required to obtain films with a truly graded structure. The effect of the bias voltage was much more significant and beneficial. An increasing negative bias voltage resulted in the development of denser films with a transition to an almost crack-free structure and better adhesion. The amorphous oxide resulted in low values of hardness and Young's modulus. (C) 2012 Elsevier B.V. All rights reserved.