7 resultados para Aminobutyric-acid Transporters
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This study investigated whether perinatal exposure to picrotoxin, a GABA(A) antagonist, modifies the effect of muscimol, a GABA(A) agonist, on the sexual behavior of adult male rats. Two hours after birth and then once daily during the next 9 days of lactation, dams received picrotoxin (0.75 mg/kg subcutaneously) or saline (1 ml/kg subcutaneously). The adult male offspring from the picrotoxin and saline groups received saline (1 ml/kg intraperitoneally) or muscimol (1 mg/kg intraperitoneally), and 15 min later, their sexual behavior was assessed. Muscimol treatment in the saline-exposed group increased the mount and intromission latencies. However, these effects were absent in the picrotoxin-exposed groups. The latencies to first ejaculation, postejaculatory mount, and intromission were decreased in both picrotoxin-exposed groups relative to the saline-exposed groups. The picrotoxin + muscimol-treated rats required more intromissions to ejaculate and the picrotoxin-exposed groups made more ejaculations than the saline-exposed groups. Thus, muscimol treatment did not increase the mount and intromission latencies following picrotoxin exposure, but increased the ejaculation frequency, which did not differ between the picrotoxin + muscimol and the picrotoxin + saline groups. These data indicate that perinatal picrotoxin treatment interfered with GABA(A) receptor development Behavioural Pharmacology 23:703-709 (c) 2012 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
Previous studies have suggested that gamma-aminobutyric acid-B (GABA(B)) receptor agonists effectively reduce ethanol intake. The quantification using real-time polymerase chain reaction of Gabbr1 and Gabbr2 mRNA from the prefrontal cortex, hypothalamus, hippocampus, and striatum in mice exposed to an animal model of the addiction developed in our laboratory was performed to evaluate the involvement of the GABAB receptor in ethanol consumption. We used outbred, Swiss mice exposed to a three-bottle free-choice model (water, 5% v/v ethanol, and 10% v/v ethanol) that consisted of four phases: acquisition (AC), withdrawal (W), reexposure (RE), and quinine-adulteration (AD). Based on individual ethanol intake, the mice were classified into three groups: "addicted" (A group; preference for ethanol and persistent consumption during all phases), "heavy" (H group; preference for ethanol and a reduction in ethanol intake in the AD phase compared to AC phase), and "light" (L group; preference for water during all phases). In the prefrontal cortex in the A group, we found high Gabbr1 and Gabbr2 transcription levels, with significantly higher Gabbr1 transcription levels compared with the C (ethanol-naive control mice). L, and H groups. In the hippocampus in the A group, Gabbr2 mRNA levels were significantly lower compared with the C, L, and H groups. In the striatum, we found a significant increase in Gabbr1 transcription levels compared with the C, L, and H groups. No differences in Gabbr1 or Gabbr2 transcription levels were observed in the hypothalamus among groups. In summary, Gabbr1 and Gabbr2 transcription levels were altered in cerebral areas related to drug taking only in mice behaviorally classified as "addicted" drinkers, suggesting that these genes may contribute to high and persistent ethanol consumption. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The mesopontine rostromedial tegmental nucleus (RMTg) is a mostly ?-aminobutyric acid (GABA)ergic structure believed to be a node for signaling aversive events to dopamine (DA) neurons in the ventral tegmental area (VTA). The RMTg receives glutamatergic inputs from the lateral habenula (LHb) and sends substantial GABAergic projections to the VTA, which also receives direct projections from the LHb. To further specify the topography of LHb projections to the RMTg and VTA, small focal injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin were aimed at different subdivisions of the LHb. The subnuclear origin of LHb inputs to the VTA and RMTg was then confirmed by injections of the retrograde tracer cholera toxin subunit b into the VTA or RMTg. Furthermore, we compared the topographic position of retrogradely labeled neurons in the RMTg resulting from VTA injections with that of anterogradely labeled axons emerging from the LHb. As revealed by anterograde and retrograde tracing, LHb projections were organized in a strikingly topographic manner, with inputs to the RMTg mostly arising from the lateral division of the LHb (LHbL), whereas inputs to the VTA mainly emerged from the medial division of the LHb (LHbM). In the RMTg, profusely branched LHb axons were found in close register with VTA projecting neurons and were frequently apposed to the latter. Overall, our findings demonstrate that LHb inputs to the RMTg and VTA arise from different divisions of the LHb and provide direct evidence for a disynaptic pathway that links the LHbL to the VTA via the RMTg. J. Comp. Neurol. 520:12781300, 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
Objective: There is accumulating evidence that the limbic system is pathologically involved in cases of psychiatric comorbidities in temporal lobe epilepsy (TLE) patients. Our objective was to develop a conceptual framework describing how neuropathological, neurochemical and electrophysiological aspects might contribute to the development of psychiatric symptoms in TLE and the putative neurobiological mechanisms that cause mood disorders in this patient subgroup. Methods: In this review, clinical, experimental and neuropathological findings, as well as neurochemical features of the limbic system were examined together to enhance our understanding of the association between TLE and psychiatric comorbidities. Finally, the value of animal models in epilepsy and mood disorders was discussed. Conclusions: TLE and psychiatric symptoms coexist more frequently than chance would predict. Alterations and neurotransmission disturbance among critical anatomical networks, and impaired or aberrant plastic changes might predispose patients with TLE to mood disorders. Clinical and experimental studies of the effects of seizures on behavior and electrophysiological patterns may offer a model of how limbic seizures increase the vulnerability of TLE patients to precipitants of psychiatric symptoms.
Resumo:
Motor cortex stimulation is generally suggested as a therapy for patients with chronic and refractory neuropathic pain. However, the mechanisms underlying its analgesic effects are still unknown. In a previous study, we demonstrated that cortical stimulation increases the nociceptive threshold of naive conscious rats with opioid participation. In the present study, we investigated the neurocircuitry involved during the antinociception induced by transdural stimulation of motor cortex in naive rats considering that little is known about the relation between motor cortex and analgesia. The neuronal activation patterns were evaluated in the thalamic nuclei and midbrain periaqueductal gray. Neuronal inactivation in response to motor cortex stimulation was detected in thalamic sites both in terms of immunolabeling (Zif268/Fos) and in the neuronal firing rates in ventral posterolateral nuclei and centromedian-parafascicular thalamic complex. This effect was particularly visible for neurons responsive to nociceptive peripheral stimulation. Furthermore, motor cortex stimulation enhanced neuronal firing rate and Fos immunoreactivity in the ipsilateral periaqueductal gray. We have also observed a decreased Zif268, delta-aminobutyric acid (GABA), and glutamic acid decarboxylase expression within the same region, suggesting an inhibition of GABAergic interneurons of the midbrain periaqueductal gray, consequently activating neurons responsible for the descending pain inhibitory control system. Taken together, the present findings suggest that inhibition of thalamic sensory neurons and disinhibition of the neurons in periaqueductal gray are at least in part responsible for the motor cortex stimulation-induced antinociception. (C) 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
The hypothalamus is a forebrain structure critically involved in the organization of defensive responses to aversive stimuli. Gamma-aminobutyric acid (GABA)ergic dysfunction in dorsomedial and posterior hypothalamic nuclei is implicated in the origin of panic-like defensive behavior, as well as in pain modulation. The present study was conducted to test the difference between these two hypothalamic nuclei regarding defensive and antinociceptive mechanisms. Thus, the GABA A antagonist bicuculline (40 ng/0.2 µL) or saline (0.9% NaCl) was microinjected into the dorsomedial or posterior hypothalamus in independent groups. Innate fear-induced responses characterized by defensive attention, defensive immobility and elaborate escape behavior were evoked by hypothalamic blockade of GABA A receptors. Fear-induced defensive behavior organized by the posterior hypothalamus was more intense than that organized by dorsomedial hypothalamic nuclei. Escape behavior elicited by GABA A receptor blockade in both the dorsomedial and posterior hypothalamus was followed by an increase in nociceptive threshold. Interestingly, there was no difference in the intensity or in the duration of fear-induced antinociception shown by each hypothalamic division presently investigated. The present study showed that GABAergic dysfunction in nuclei of both the dorsomedial and posterior hypothalamus elicit panic attack-like defensive responses followed by fear-induced antinociception, although the innate fear-induced behavior originates differently in the posterior hypothalamus in comparison to the activity of medial hypothalamic subdivisions.
Resumo:
This paper presents an up-to-date review of the evidence indicating that atypical neurotransmitters such as nitric oxide (NO) and endocannabinoids (eCBs) play an important role in the regulation of aversive responses in the periaqueductal gray (PAG). Among the results supporting this role, several studies have shown that inhibitors of neuronal NO synthase or cannabinoid receptor type 1 (CB1) receptor agonists cause clear anxiolytic responses when injected into this region. The nitrergic and eCB systems can regulate the activity of classical neurotransmitters such as glutamate and γ-aminobutyric acid (GABA) that control PAG activity. We propose that they exert a ‘fine-tuning’ regulatory control of defensive responses in this area. This control, however, is probably complex, which may explain the usually bell-shaped dose-response curves observed with drugs that act on NO- or CB1-mediated neurotransmission. Even if the mechanisms responsible for this complex interaction are still poorly understood, they are beginning to be recognized. For example, activation of transient receptor potential vanilloid type-1 channel (TRPV1) receptors by anandamide seems to counteract the anxiolytic effects induced by CB1 receptor activation caused by this compound. Further studies, however, are needed to identify other mechanisms responsible for this fine-tuning effect.