5 resultados para American Society of Church History
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Primary immunodeficiency diseases (PIDD) are associated with significant morbidity and mortality and result in a significant public health burden. This is in part due to the lack of appropriate diagnosis and treatment of these patients. It is critical that governments become aware of this problem and provide necessary resources to reduce this impact on health care systems. Leading physicians in their respective countries must be supported by their own governments in order to implement tools and provide education and thus improve the diagnosis and treatment of PIDD. The Latin American Society of Primary Immunodeficiencies (LASID) has initiated a large number of activities aimed at achieving these goals, including the establishment of a PIDD registry, development of educational programmes and guidelines, and the introduction of a PIDD fellowship programme. These initiatives are positively impacting the identification and appropriate treatment of patients with PIDD in Latin America. Nevertheless, much remains to be done to ensure that every person with PIDD receives proper therapy. (C) 2011 SEICAP. Published by Elsevier Espana, S.L. All rights reserved.
Resumo:
The circumscription of genera belonging to tribe Bignonieae (Bignoniaceae) has traditionally been complex, with only a few genera having stable circumscriptions in the various classification systems proposed for the tribe. The genus Lundia, for instance, is well characterized by a series of morphological synapomorphies and its circumscription has remained quite stable throughout its history. Despite the stable circumscription of Lundia, the circumscription of species within the genus has remained problematic. This study aims to reconstruct the phylogeny of Lundia in order to refine species circumscriptions, gain a better understanding of relationships between taxa, and identify potential morphological synapomorphies for species and major clades. We sampled 26 accessions representing 13 species of Lundia, and 5 outgroups, and reconstructed the phylogeny of the genus using a chloroplast (ndhF) and a nuclear marker (PepC). Data derived from sequences of the individual loci were analyzed using parsimony and Bayesian inference, and the combined molecular dataset was analyzed with Bayesian methods. The monophyly of Lundia nitidula, a species with a particularly complex circumscription, was tested using Shimodaira-Hasegawa (SH) test and the approximately unbiased test for phylogenetic tree selection (AU test). In addition, 40 morphological characters were mapped onto the tree that resulted from the analysis of the combined molecular dataset in order to identify morphological synapomorphies of individual species and major clades. Lundia and most species currently recognized within the genus were strongly supported as monophyletic in all analyses. One species, Lundia nitidula, was not resolved as monophyletic, but the monophyly of this species was not rejected by the AU and SH tests. Lundia sect. Eriolundia is resolved as paraphyletic in all analyses, while Lundia sect. Eulundia is monophyletic and supported by the same morphological characters traditionally used to circumscribe this section. The phylogeny of Lundia contributed important information for a better circumscription of species and served as basis the taxonomic revision of the genus.
Resumo:
In the present study, mitochondrial (mt)DNA sequence data were used to examine the genetic structure of fire-eye antbirds (genus Pyriglena) along the Atlantic Forest and the predictions derived from the river hypothesis and from a Last Glacial Maximum Pleistocene refuge paleomodel were compared to explain the patterns of genetic variation observed in these populations. A total of 266 individuals from 45 populations were sampled over a latitudinal transect and a number of phylogeographical and population genetics analytical approaches were employed to address these questions. The pattern of mtDNA variation observed in fire-eye antbirds provides little support for the view that populations were isolated by the modern course of major Atlantic Forest rivers. Instead, the data provide stronger support for the predictions of the refuge model. These results add to the mounting evidence that climatic oscillations appear to have played a substantial role in shaping the phylogeographical structure and possibly the diversification of many taxa in this region. However, the results also illustrate the potential for more complex climatic history and historical changes in the geographical distribution of Atlantic Forest than envisioned by the refuge model. (c) 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105, 900824.
Resumo:
We analyse the dependence of the luminosity function (LF) of galaxies in groups on group dynamical state. We use the Gaussianity of the velocity distribution of galaxy members as a measurement of the dynamical equilibrium of groups identified in the Sloan Digital Sky Survey Data Release 7 by Zandivarez & Martinez. We apply the Anderson-Darling goodness-of-fit test to distinguish between groups according to whether they have Gaussian or non-Gaussian velocity distributions, i.e. whether they are relaxed or not. For these two subsamples, we compute the (0.1)r-band LF as a function of group virial mass and group total luminosity. For massive groups, , we find statistically significant differences between the LF of the two subsamples: the LFs of groups that have Gaussian velocity distributions have a brighter characteristic absolute magnitude (similar to 0.3 mag) and a steeper faint-end slope (similar to 0.25). We detect a similar effect when comparing the LF of bright [M-0.1r(group) - 5log(h) < -23.5] Gaussian and non-Gaussian groups. Our results indicate that, for massive/luminous groups, the dynamical state of the system is directly related to the luminosity of its galaxy members.
Resumo:
Abstract Background How are morphological evolution and developmental changes related? This rather old and intriguing question had a substantial boost after the 70s within the framework of heterochrony (changes in rates or timing of development) and nowadays has the potential to make another major leap forward through the combination of approaches: molecular biology, developmental experimentation, comparative systematic studies, geometric morphometrics and quantitative genetics. Here I take an integrated approach combining life-history comparative analyses, classical and geometric morphometrics applied to ontogenetic series to understand changes in size and shape which happen during the evolution of two New World Monkeys (NWM) sister genera. Results Cebus and Saimiri share the same basic allometric patterns in skull traits, a result robust to sexual and ontogenetic variation. If adults of both genera are compared in the same scale (discounting size differences) most differences are small and not statistically significant. These results are consistent using both approaches, classical and geometric Morphometrics. Cebus is a genus characterized by a number of peramorphic traits (adult-like) while Saimiri is a genus with paedomorphic (child like) traits. Yet, the whole clade Cebinae is characterized by a unique combination of very high pre-natal growth rates and relatively slow post-natal growth rates when compared to the rest of the NWM. Morphologically Cebinae can be considered paedomorphic in relation to the other NWM. Geometric morphometrics allows the precise separation of absolute size, shape variation associated with size (allometry), and shape variation non-associated with size. Interestingly, and despite the fact that they were extracted as independent factors (principal components), evolutionary allometry (those differences in allometric shape associated with intergeneric differences) and ontogenetic allometry (differences in allometric shape associated with ontogenetic variation within genus) are correlated within these two genera. Furthermore, morphological differences produced along these two axes are quite similar. Cebus and Saimiri are aligned along the same evolutionary allometry and have parallel ontogenetic allometry trajectories. Conclusion The evolution of these two Platyrrhini monkeys is basically due to a size differentiation (and consequently to shape changes associated with size). Many life-history changes are correlated or may be the causal agents in such evolution, such as delayed on-set of reproduction in Cebus and larger neonates in Saimiri.