7 resultados para American Optical Company
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4748519]
Resumo:
Objective: To characterize optic nerve head (ONH) anatomy related to the clinical optic disc margin with spectral domain-optical coherence tomography (SD-OCT). Design: Cross-sectional study. Participants: Patients with open-angle glaucoma with focal, diffuse, and sclerotic optic disc damage, and age-matched normal controls. Methods: High-resolution radial SD-OCT B-scans centered on the ONH were analyzed at each clock hour. For each scan, the border tissue of Elschnig was classified for obliqueness (internally oblique, externally oblique, or nonoblique) and the presence of Bruch's membrane overhanging the border tissue. Optic disc stereophotographs were co-localized to SD-OCT data with customized software. The frequency with which the disc margin identified in stereophotographs coincided with (1) Bruch's membrane opening (BMO), defined as the innermost edge of Bruch's membrane; (2) Bruch's membrane/border tissue, defined as any aspect of either outside BMO or border tissue; or (3) border tissue, defined as any aspect of border tissue alone, in the B-scans was computed at each clock hour. Main Outcome Measures: The SD-OCT structures coinciding with the disc margin in stereophotographs. Results: There were 30 patients (10 with each type of disc damage) and 10 controls, with a median (range) age of 68.1 (42-86) years and 63.5 (42-77) years, respectively. Although 28 patients (93%) had 2 or more border tissue configurations, the most predominant one was internally oblique, primarily superiorly and nasally, frequently with Bruch's membrane overhang. Externally oblique border tissue was less frequent, observed mostly inferiorly and temporally. In controls, there was predominantly internally oblique configuration around the disc. Although the configurations were not statistically different between patients and controls, they were among the 3 glaucoma groups. At most locations, the SD-OCT structure most frequently identified as the disc margin was some aspect of Bruch's membrane and border tissue external to BMO. Bruch's membrane overhang was regionally present in the majority of patients with glaucoma and controls; however, in most cases it was not visible as the disc margin. Conclusions: The clinically perceived disc margin is most likely not the innermost edge of Bruch's membrane detected by SD-OCT. These findings have important implications for the automated detection of the disc margin and estimates of the neuroretinal rim. Financial Disclosure(s): Proprietary or commercial disclosure may be found after the references. Ophthalmology 2012;119:738-747 (C) 2012 by the American Academy of Ophthalmology.
Resumo:
Oxygen-deficient TiO2 films with enhanced visible and near-infrared optical absorption have been deposited by reactive sputtering using a planar diode radio frequency magnetron configuration. It is observed that the increase in the absorption coefficient is more effective when the O-2 gas supply is periodically interrupted rather than by a decrease of the partial O-2 gas pressure in the deposition plasma. The optical absorption coefficient at 1.5 eV increases from about 1 x 10(2) cm(-1) to more than 4 x 10(3) cm(-1) as a result of the gas flow discontinuity. A red-shift of similar to 0.24 eV in the optical absorption edge is also observed. High resolution transmission electron microscopy with composition analysis shows that the films present a dense columnar morphology, with estimated mean column width of 40nm. Moreover, the interruptions of the O-2 gas flow do not produce detectable variations in the film composition along its growing direction. X-ray diffraction and micro-Raman experiments indicate the presence of the TiO2 anatase, rutile, and brookite phases. The anatase phase is dominant, with a slight increment of the rutile and brookite phases in films deposited under discontinued O-2 gas flow. The increase of optical absorption in the visible and near-infrared regions has been attributed to a high density of defects in the TiO2 films, which is consistent with density functional theory calculations that place oxygen-related vacancy states in the upper third of the optical bandgap. The electronic structure calculation results, along with the adopted deposition method and experimental data, have been used to propose a mechanism to explain the formation of the observed oxygen-related defects in TiO2 thin films. The observed increase in sub-bandgap absorption and the modeling of the corresponding changes in the electronic structure are potentially useful concerning the optimization of efficiency of the photocatalytic activity and the magnetic doping of TiO2 films. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4724334]
Resumo:
We investigate the occurrence of the optical Kerr effect and two-photon absorption when an oil-based magnetic Fe3O4 nanoparticles colloidal suspension is illuminated with high intensity femtosecond laser pulses. The frequency of the pulses is controlled and the Z-scan technique is employed in our measurements of the nonlinear optical Kerr coefficient (n(2)) and two-photon absorption coefficient (beta). From these values it was possible to calculate the real and imaginary parts of the third-order susceptibility. We observed that increasing the pulse frequency, additional physical processes take place, increasing artificially the absolute values of n(2) and beta. The experimental conditions are discussed to assure the obtention of reliable values of these nonlinear optical parameters, which may be useful in all-optical switching and optical power limiting applications. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4723829]
Resumo:
The nonlinear index of refraction (n(2)) and the two-photon absorption coefficient (beta) of water-based ferrofluids made of magnetite nanocrystals of different sizes and with different coatings have been measured through the Z-scan technique, with ultrashort (femtoseconds) laser pulses. Their third-order susceptibility is calculated from the values of n(2) and beta. The influence of different particles' coatings and sizes on these nonlinear optical properties are investigated. The values of n(2) and beta depend more significantly on the nanoparticles' size than on the particular coating. We observe a decrease of beta as the nanoparticles' diameters decrease, although the optical gap is found to be the same for all samples. The results are interpreted considering modifications in the electronic orbital shape due to the particles' nanosize effect.
Resumo:
Biomass burning represents one of the largest sources of particulate matter to the atmosphere, which results in a significant perturbation to the Earth’s radiative balance coupled with serious negative impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect of 0.03 Wm-2, however the uncertainty is 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months (usually from August-October). Furthermore, a growing number of people live within the Amazon region, which means that they are subject to the deleterious effects on their health from exposure to substantial volumes of polluted air. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil, are presented here. A suite of instrumentation was flown on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft and was supported by ground based measurements, with extensive measurements made in Porto Velho, Rondonia. The aircraft sampled a range of conditions with sampling of fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate.
Resumo:
At present, solid thin films are recognized by their well established and mature processing technology that is able to produce components which, depending on their main characteristics, can perform either passive or active functions. Additionally, Si-based materials in the form of thin films perfectly match the concept of miniaturized and low-consumption devices-as required in various modern technological applications. Part of these aspects was considered in the present work that was concerned with the study of optical micro-cavities entirely based on silicon and silicon nitride thin films. The structures were prepared by the sputtering deposition method which, due to the adopted conditions (atmosphere and deposition rate) and arrangement of layers, provided cavities operating either in the visible (at ~ 670 nm) or in the near-infrared (at ~ 1560 nm) wavelength ranges. The main differential of the work relies on the construction of optical microcavities with a reduced number of periods whose main properties can be changed by thermal annealing treatments. The work also discusses the angle-dependent behavior of the optical transmission profiles as well as the use of the COMSOL software package to simulate the microcavities.