4 resultados para Agricultural wastes
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The aim of this paper is to study the feasibility of using cellulose fibers obtained from an agricultural waste, hemp core (Cannabis Sativa L), through different new environmental friendly cooking processes for fiber-cement production. The physical and mechanical properties of the fiber reinforced concrete, which depend on the nature and morphology of the fibers, matrix properties and the interactions between them, must be kept between the limits required for its application. Therefore, the morphology of the fibers and how its use affects the flocculation, retention and drainage processes in the fiber-cement manufacture, and the mechanical and physical properties of the fiber-cement product have been studied. The use of pulp obtained by means of the hemp core cooking in ethanolamine at 60% concentration at 180 degrees C during 90 min resulted in the highest solids retention and the best mechanical properties among the studied hemp core pulps. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Thermoascus aurantiacus is able to secrete most of the hemicellulolytic and cellulolytic enzymes. To establish the xylanase inducers of T. aurantiacus, the mycelia were first grown on glucose up until the end of the exponential growth phase, followed by washing and re-suspension in a basal medium without a carbon source. Pre-weighed amounts of xylose (final concentration of 3.5 mg/ml), xylobiose (7 mg/ml) and hydrolyzed xylan from sugarcane bagasse (HXSB) which contained xylose, xylobiose and xylotriose (6.8 mg/ml) were evaluated as inducers of xylanase. It was observed that xylose did not suppress enzyme induction of T. aurantiacus when used in low concentrations, regardless of whether it was inoculated with xylobiose. Xylobiose promoted fast enzyme production stopping after 10 h, even at a low consumption rate of the carbon source; therefore xylobiose appears to be the natural inducer of xylanase. In HXSB only a negligible xylanase activity was determined. Xylose present in HXSB was consumed within the first 10 h while xylobiose was partially hydrolyzed at a slow rate. The profile of alpha-arabinofuranosidase induction was very similar in media induced with xylobiose or HXSB, but induction with xylose showed some positive effects as well. The production profile for the xylanase was accompanied by low levels of cellulolytic activity. In comparison, growth in HXSB resulted in different profiles of both xylanase and cellulase production, excluding the possibility of xylanase acting as endoglucanases.
Resumo:
Humicola brevis var. thermoidea cultivated under solid state fermentation in wheat bran and water (1:2 w/v) was a good producer of beta-glucosidase and xylanase. After optimization using response surface methodology the level of xylanase reached 5,791.2 +/- A 411.2 U g(-1), while beta-glucosidase production was increased about 2.6-fold, reaching 20.7 +/- A 1.5 U g(-1). Cellulase levels were negligible. Biochemical characterization of H. brevis beta-glucosidase and xylanase activities showed that they were stable in a wide pH range. Optimum pH for beta-glucosidase and xylanase activities were 5.0 and 5.5, respectively, but the xylanase showed 80 % of maximal activity when assayed at pH 8.0. Both enzymes presented high thermal stability. The beta-glucosidase maintained about 95 % of its activity after 26 h in water at 55 A degrees C, with half-lives of 15.7 h at 60 A degrees C and 5.1 h at 65 A degrees C. The presence of xylose during heat treatment at 65 A degrees C protected beta-glucosidase against thermal inactivation. Xylanase maintained about 80 % of its activity after 200 h in water at 60 A degrees C. Xylose stimulated beta-glucosidase activity up to 1.7-fold, at 200 mmol L-1. The notable features of both xylanase and beta-glucosidase suggest that H. brevis crude culture extract may be useful to compose efficient enzymatic cocktails for lignocellulosic materials treatment or paper pulp biobleaching.
Resumo:
This work addresses the synthesis of carbon nanomaterials (CNMs) by up-cycling common solid wastes. These feedstocks could supersede the use of costly and often toxic or highly flammable chemicals, such as hydrocarbon gases, carbon monoxide, and hydrogen, which are commonly used as feedstocks in current nanomanufacturing processes for CNMs. Agricultural sugar cane bagasse and corn residues, scrap tire chips, and postconsumer polyethylene (PE) and polyethylene terephthalate (PET) bottle shreddings were either thermally treated by sole pyrolysis or by sequential pyrolysis and partial oxidation. The resulting gaseous carbon-bearing effluents were then channeled into a heated reactor. CNMs, including carbon nanotubes, were catalytically synthesized therein on stainless steel meshes. This work revealed that the structure of the resulting CNMs is determined by the feedstock type, through the disparate mixtures of carbon-bearing gases generated when different feedstocks are pyrolyzed. CNM characterization was conducted by scanning and transmission electron microscopy as well as by Raman spectroscopy and by thermogravimetric analysis. Gas chromatography was used to characterize the gases in the synthesis chamber. This work demonstrated an alternative method for efficient manufacturing of CNMs using both biodegradable and nonbiodegradable agricultural and municipal carbonaceous wastes.