14 resultados para African savanna
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Much effort has been devoted to understanding the function of extrafloral nectaries (EFNs) for antplantherbivore interactions. However, the pattern of evolution of such structures throughout the history of plant lineages remains unexplored. In this study, we used empirical knowledge on plant defences mediated by ants as a theoretical framework to test specific hypotheses about the adaptive role of EFNs during plant evolution. Emphasis was given to different processes (neutral or adaptive) and factors (habitat change and trade-offs with new trichomes) that may have affected the evolution of antplant associations. We measured seven EFN quantitative traits in all 105 species included in a well-supported phylogeny of the tribe Bignonieae (Bignoniaceae) and collected field data on antEFN interactions in 32 species. We identified a positive association between ant visitation (a surrogate of ant guarding) and the abundance of EFNs in vegetative plant parts and rejected the hypothesis of phylogenetic conservatism of EFNs, with most traits presenting K-values < 1. Modelling the evolution of EFN traits using maximum likelihood approaches further suggested adaptive evolution, with static-optimum models showing a better fit than purely drift models. In addition, the abundance of EFNs was associated with habitat shifts (with a decrease in the abundance of EFNs from forest to savannas), and a potential trade-off was detected between the abundance of EFNs and estipitate glandular trichomes (i.e. trichomes with sticky secretion). These evolutionary associations suggest divergent selection between species as well as explains K-values < 1. Experimental studies with multiple lineages of forest and savanna taxa may improve our understanding of the role of nectaries in plants. Overall, our results suggest that the evolution of EFNs was likely associated with the adaptive process which probably played an important role in the diversification of this plant group.
Resumo:
This article analyzes the construction of the African perspective in the General History of Africa project (GHA), focusing on the period between 1965 and 1979. With the participation of over two hundred international experts under the auspices of Unesco, this was one of the greatest intellectual projects of the twentieth century. Based on primary sources, this analysis emphasizes the internal conflicts involved in the construction of the African perspective as a hegemonic line of thought in the GHA. Two critical moments of the project were found in the investigation: the controversial years (1972-78), and the pragmatic years (1978-82). As a result of these disputes, theoretical and methodological parameters were constructed, in addition to eight volumes of material published in the 1980s, and recently republished in Brazil.
Resumo:
Non-myrmecophilous lepidopteran larvae using plants bearing ant attractants such as extrafloral nectaries are good models for studying morphological and behavioural mechanisms against ant predation. Udranomia spitzi (Hesperiidae) is a butterfly whose larvae feed on leaves of Ouratea spectabilis (Ochnaceae), a plant with extrafloral nectaries. We described the early stages of U. spitzi, and used field observations and experiments to investigate the defensive strategies of caterpillars against predatory ants. Larvae pass through five instars and pupation occurs inside larval leaf shelters. Ant-exclusion experiments revealed that the presence of ants did not affect significantly caterpillar survival. Predation experiments showed that vulnerability to ant predation decreased with increase in larval size. The present study showed that predatory ants are not as relevant as demonstrated for other systems, and also illustrates how observational data and field experiments can contribute to a better understanding of the biology and ecology of a species of interest.
Resumo:
The numbers of fires detected on forest, savanna and transition lands during the 2002-10 biomass burning seasons in Amazonia are shown using fire count data and co-located land cover classifications from the Moderate Resolution Imaging Spectroradiometer (MODIS). The ratio of forest fires to savanna fires has varied substantially over the study period, with a maximum ratio of 0.65:1 in 2005 and a minimum ratio of 0.27:1 in 2009, with the four lowest years occurring in 2007-10. The burning during the droughts of 2007 and 2010 is attributed to a higher number of savanna fires relative to the drought of 2005. A decrease in the regional mean single scattering albedo of biomass burning aerosols, consistent with the shift from forest to savanna burning, is also shown. During the severe drought of 2010, forest fire detections were lower in many areas compared with 2005, even though the drought was more severe in 2010. This result suggests that improved fire management practices, including stricter burning regulations as well as lower deforestation burning, may have reduced forest fires in 2010 relative to 2005 in some areas of the Amazon Basin.
Resumo:
The objective of the present study was to evaluate the stability (-18 degrees C) of minced African catfish (MF) for 180 days. Microbiological aspects, lipid oxidation, and total volatile nitrogenous bases (TVB-N) of the MF were determined with and without washing. Washing of the MF caused an increase in moisture content, decrease in proteins, and leaching of the compounds responsible for lipid oxidation. The TVB-N remained stable during the storage period. The microbiological parameters of the MF remained within the legal limits. Thus, a 180-days storage period does not affect the quality of MF and could be a good alternative for the exploitation of this species in Brazil.
Resumo:
Background: Balancing the subject composition of case and control groups to create homogenous ancestries between each group is essential for medical association studies. Methods: We explored the applicability of single-tube 34-plex ancestry informative markers (AIM) single nucleotide polymorphisms (SNPs) to estimate the African Component of Ancestry (ACA) to design a future case-control association study of a Brazilian urban sample. Results: One hundred eighty individuals (107 case group; 73 control group) self-described as white, brown-intermediate or black were selected. The proportions of the relative contribution of a variable number of ancestral population components were similar between case and control groups. Moreover, the case and control groups demonstrated similar distributions for ACA <0.25 and >0.50 categories. Notably a high number of outlier values (23 samples) were observed among individuals with ACA <0.25. These individuals presented a high probability of Native American and East Asian ancestral components; however, no individuals originally giving these self-described ancestries were observed in this study. Conclusions: The strategy proposed for the assessment of ancestry and adjustment of case and control groups for an association study is an important step for the proper construction of the study, particularly when subjects are taken from a complex urban population. This can be achieved using a straight forward multiplexed AIM-SNPs assay of highly discriminatory ancestry markers.
Resumo:
Parasites of the genus Trypanosoma are common in bats and those of the subgenus Schizotrypanum are restricted to bats throughout the world, with the exception of Trypanosoma (Schizotrypanum) cruzi that also infects other mammals and is restricted to the American Continent. We have characterized trypanosome isolates from Molossidae bats captured in Mozambique, Africa. Morphology and behaviour in culture, supported by phylogenetic inferences using SSU (small subunit) rRNA, gGAPDH (glycosomal glyceraldehyde 3-phosphate dehydrogenase) and Cyt b (cytochrome b) genes, allowed to classify the isolates as a new Schizotrypanum species named Trypanosoma (Schizotrypanum) erneyi sp. nov. This is the first report of a Schizotrypanum species from African bats cultured, characterized morphologically and biologically, and positioned in phylogenetic trees. The unprecedented finding of a new species of the subgenus Schizotrypanum from Africa that is closest related to the America-restricted Trypanosoma (Schizotrypanum) cruzi marinkellei and T. cruzi provides new insights into the origin and evolutionary history of T. cruzi and closely related bat trypanosomes. Altogether, data from our study support the hypothesis of an ancestor trypanosome parasite of bats evolving to infect other mammals, even humans, and adapted to transmission by triatomine bugs in the evolutionary history of T. cruzi in the New World. (c) 2012 Elsevier GmbH. All rights reserved.
Resumo:
FAPESP [2008/52324-6]
Resumo:
The aim of the study was to screen 11 selected traditional medicinal plants from West Africa for their in vitro antiplasmodial activity in order to determine the activity of single and of combination of plant extracts and to examine the activity of isolated pure compounds. Ethanolic and aqueous extracts of the 11 selected plants and pure compounds from Phyllanthus muellerianus and Anogeissus leiocarpus were tested in vitro against Plasmodium falciparum 3D7. Proliferation inhibitory effects were monitored after 48 h. Among the plants and pure compounds investigated in this study, geraniin from P. muellerianus, ellagic, gentisic, and gallic acids from A. leiocarpus, and extracts from A. leiocarpus, P. muellerianus and combination of A. leiocarpus with P. muellerianus affected the proliferation of P. falciparum most potently. Significant inhibitory activity was observed in combination of A. leiocarpus with P. muellerianus (IC50 = 10.8 mu g/ml), in combination of A. leiocarpus with Khaya senegalensis (IC50 = 12.5 mu g/ml), ellagic acid (IC50 = 2.88 mu M), and geraniin (IC50 = 11.74 mu M). In general growth inhibition was concentration-dependent revealing IC50 values ranging between 10.8 and -40.1 mu g/ml and 2.88 and 11.74 mu M for plant extracts and pure substances respectively. Comparison with literature sources of in vivo and in vitro toxicity data revealed that thresholds are up to two times higher than the determined IC50 values. Thus, the present study suggests that geraniin from P. muellerianus; ellagic acid, gallic acid, and gentisic acid from A. leiocarpus; and combination of extracts from A. leiocarpus with either P. muellerianus or K. senegalensis could be a potential option for malaria treatment.
Resumo:
Abstract Background Bat trypanosomes have been implicated in the evolutionary history of the T. cruzi clade, which comprises species from a wide geographic and host range in South America, Africa and Europe, including bat-restricted species and the generalist agents of human American trypanosomosis T. cruzi and T. rangeli. Methods Trypanosomes from bats (Rhinolophus landeri and Hipposideros caffer) captured in Mozambique, southeast Africa, were isolated by hemoculture. Barcoding was carried out through the V7V8 region of Small Subunit (SSU) rRNA and Fluorescent Fragment Length barcoding (FFLB). Phylogenetic inferences were based on SSU rRNA, glyceraldehyde phosphate dehydrogenase (gGAPDH) and Spliced Leader (SL) genes. Morphological characterization included light, scanning and transmission electron microscopy. Results New trypanosomes from bats clustered together forming a clade basal to a larger assemblage called the T. cruzi clade. Barcoding, phylogenetic analyses and genetic distances based on SSU rRNA and gGAPDH supported these trypanosomes as a new species, which we named Trypanosoma livingstonei n. sp. The large and highly polymorphic SL gene repeats of this species showed a copy of the 5S ribosomal RNA into the intergenic region. Unique morphological (large and broad blood trypomastigotes compatible to species of the subgenus Megatrypanum and cultures showing highly pleomorphic epimastigotes and long and slender trypomastigotes) and ultrastructural (cytostome and reservosomes) features and growth behaviour (when co-cultivated with HeLa cells at 37°C differentiated into trypomastigotes resembling the blood forms and do not invaded the cells) complemented the description of this species. Conclusion Phylogenetic inferences supported the hypothesis that Trypanosoma livingstonei n. sp. diverged from a common ancestral bat trypanosome that evolved exclusively in Chiroptera or switched at independent opportunities to mammals of several orders forming the clade T. cruzi, hence, providing further support for the bat seeding hypothesis to explain the origin of T. cruzi and T. rangeli.
Resumo:
Abstract Background Little is known about the diversity, phylogenetic relationships, and biogeography of trypanosomes infecting non-mammalian hosts. In this study, we investigated the influence of host species and biogeography on shaping the genetic diversity, phylogenetic relationship, and distribution of trypanosomes from South American alligatorids and African crocodilids. Methods Small Subunit rRNA (SSU rRNA) and glycosomal Glyceraldehyde Phosphate Dehydrogenase (gGAPDH) genes were employed for phylogenetic inferences. Trypanosomes from crocodilians were obtained by haemoculturing. Growth behaviour, morphology, and ultrastructural features complement the molecular description of two new species strongly supported by phylogenetic analyses. Results The inferred phylogenies disclosed a strongly supported crocodilian-restricted clade comprising three subclades. The subclade T. grayi comprised the African Trypanosoma grayi from Crocodylus niloticus and tsetse flies. The subclade T. ralphi comprised alligatorid trypanosomes represented by Trypanosoma ralphi n. sp. from Melanosuchus niger, Caiman crocodilus and Caiman yacare from Brazilian river basins. T. grayi and T. ralphi were sister subclades. The basal subclade T. terena comprised alligatorid trypanosomes represented by Trypanosoma terena n. sp. from Ca. yacare sharing hosts and basins with the distantly genetic related T. ralphi. This subclade also included the trypanosome from Ca. crocodilus from the Orinoco basin in Venezuela and, unexpectedly, a trypanosome from the African crocodilian Osteolaemus tetraspis. Conclusion The close relationship between South American and African trypanosomes is consistent with paleontological evidence of recent transoceanic dispersal of Crocodylus at the Miocene/Pliocene boundaries (4–5 mya), and host-switching of trypanosomes throughout the geological configuration of South American hydrographical basins shaping the evolutionary histories of the crocodilians and their trypanosomes.
Resumo:
Background: Little is known about the diversity, phylogenetic relationships, and biogeography of trypanosomes infecting non-mammalian hosts. In this study, we investigated the influence of host species and biogeography on shaping the genetic diversity, phylogenetic relationship, and distribution of trypanosomes from South American alligatorids and African crocodilids. Methods: Small Subunit rRNA (SSU rRNA) and glycosomal Glyceraldehyde Phosphate Dehydrogenase (gGAPDH) genes were employed for phylogenetic inferences. Trypanosomes from crocodilians were obtained by haemoculturing. Growth behaviour, morphology, and ultrastructural features complement the molecular description of two new species strongly supported by phylogenetic analyses. Results: The inferred phylogenies disclosed a strongly supported crocodilian-restricted clade comprising three subclades. The subclade T. grayi comprised the African Trypanosoma grayi from Crocodylus niloticus and tsetse flies. The subclade T. ralphi comprised alligatorid trypanosomes represented by Trypanosoma ralphi n. sp. From Melanosuchus niger, Caiman crocodilus and Caiman yacare from Brazilian river basins. T. grayi and T. ralphi were sister subclades. The basal subclade T. terena comprised alligatorid trypanosomes represented by Trypanosoma terena n. sp. from Ca. yacare sharing hosts and basins with the distantly genetic related T. ralphi. This subclade also included the trypanosome from Ca. crocodilus from the Orinoco basin in Venezuela and, unexpectedly, a trypanosome from the African crocodilian Osteolaemus tetraspis. Conclusion: The close relationship between South American and African trypanosomes is consistent with paleontological evidence of recent transoceanic dispersal of Crocodylus at the Miocene/Pliocene boundaries (4–5 mya), and host-switching of trypanosomes throughout the geological configuration of South American hydrographical basins shaping the evolutionary histories of the crocodilians and their trypanosomes.
Resumo:
BACKGROUND: Bat trypanosomes have been implicated in the evolutionary history of the T. cruzi clade, which comprises species from a wide geographic and host range in South America, Africa and Europe, including bat-restricted species and the generalist agents of human American trypanosomosis T. cruzi and T. rangeli. METHODS: Trypanosomes from bats (Rhinolophus landeri and Hipposideros caffer) captured in Mozambique, southeast Africa, were isolated by hemoculture. Barcoding was carried out through the V7V8 region of Small Subunit (SSU) rRNA and Fluorescent Fragment Length barcoding (FFLB). Phylogenetic inferences were based on SSU rRNA, glyceraldehyde phosphate dehydrogenase (gGAPDH) and Spliced Leader (SL) genes. Morphological characterization included light, scanning and transmission electron microscopy. RESULTS: New trypanosomes from bats clustered together forming a clade basal to a larger assemblage called the T. cruzi clade. Barcoding, phylogenetic analyses and genetic distances based on SSU rRNA and gGAPDH supported these trypanosomes as a new species, which we named Trypanosoma livingstonei n. sp. The large and highly polymorphic SL gene repeats of this species showed a copy of the 5S ribosomal RNA into the intergenic region. Unique morphological (large and broad blood trypomastigotes compatible to species of the subgenus Megatrypanum and cultures showing highly pleomorphic epimastigotes and long and slender trypomastigotes) and ultrastructural (cytostome and reservosomes) features and growth behaviour (when co-cultivated with HeLa cells at 37°C differentiated into trypomastigotes resembling the blood forms and do not invaded the cells) complemented the description of this species. CONCLUSION: Phylogenetic inferences supported the hypothesis that Trypanosoma livingstonei n. sp. diverged from a common ancestral bat trypanosome that evolved exclusively in Chiroptera or switched at independent opportunities to mammals of several orders forming the clade T. cruzi, hence, providing further support for the bat seeding hypothesis to explain the origin of T. cruzi and T. rangeli.