3 resultados para Added mass

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The investigation of vortex-induced vibration on very short cylinders with two degrees of freedom has drawn the attention of a large number of researchers. Some investigations on such a problem are carried out in order to have a better understanding of the physics involved in vortex-induced motions of floating bodies such as offshore platforms. In this paper, experiments were carried out in a recirculating water channel over the range of Reynolds number 6000mass ratios (m⁎=1.00; 2.62 and 4.36) and very low aspect ratios (0.3≤L/D≤2.0) were shown and the results were discussed in depth. Conversely to what would be expected for cylinders with very low aspect ratio, the results showed large motions in the transverse direction with maximum amplitudes around 1.5 diameters for cylinders with L/D=2.0, despite being smaller when the aspect ratio is reduced. Moreover, the response amplitudes presented high values around 0.4 diameters in the in-line direction. In fact, the large transverse motions were related to a strong coupling with the in-line responses, visibly identified in the plots of nondimensional frequency, as well as by the trajectories in the XY-plane, Lissajous figures, particularly in the case of m⁎=1.00 and L/D=2.0, when 8-shape trajectories were clearly observed. The case of m⁎=1.00 deserves more attention because of its smaller amplitude compared to the cases with the same aspect ratio and a larger mass ratio. This counter-intuitive behavior seems to be related to the energy transferring process from the steady stream to the oscillatory hydroelastic system. Finally, it is noteworthy that the characteristic of the “Strouhal-like” number decreases when the aspect ratio decreases, as also observed in previous works available in the literature, most of them for stationary cylinders.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The investigation of vortex-induced vibration on very short cylinders with two degrees of freedom has drawn the attention of a large number of researchers. Some investigations on such a problem are carried out in order to have a better understanding of the physics involved in vortex-induced motions of floating bodies such as offshore platforms. In this paper, experiments were carried out in a recirculating water channel over the range of Reynolds number 6000mass ratios (m⁎=1.00; 2.62 and 4.36) and very low aspect ratios (0.3≤L/D≤2.0) were shown and the results were discussed in depth. Conversely to what would be expected for cylinders with very low aspect ratio, the results showed large motions in the transverse direction with maximum amplitudes around 1.5 diameters for cylinders with L/D=2.0, despite being smaller when the aspect ratio is reduced. Moreover, the response amplitudes presented high values around 0.4 diameters in the in-line direction. In fact, the large transverse motions were related to a strong coupling with the in-line responses, visibly identified in the plots of nondimensional frequency, as well as by the trajectories in the XY-plane, Lissajous figures, particularly in the case of m⁎=1.00 and L/D=2.0, when 8-shape trajectories were clearly observed. The case of m⁎=1.00 deserves more attention because of its smaller amplitude compared to the cases with the same aspect ratio and a larger mass ratio. This counter-intuitive behavior seems to be related to the energy transferring process from the steady stream to the oscillatory hydroelastic system. Finally, it is noteworthy that the characteristic of the “Strouhal-like” number decreases when the aspect ratio decreases, as also observed in previous works available in the literature, most of them for stationary cylinders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address the spherical accretion of generic fluids onto black holes. We show that, if the black hole metric satisfies certain conditions, in the presence of a test fluid it is possible to derive a fully relativistic prescription for the black hole mass variation. Although the resulting equation may seem obvious due to a form of it appearing as a step in the derivation of the Schwarzschild metric, this geometrical argument is necessary to fix the added degree of freedom one gets for allowing the mass to vary with time. This result has applications on cosmological accretion models and provides a derivation from first principles to serve as a basis to the accretion equations already in use in the literature.