2 resultados para Accumulation rate, marine organic carbon

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antarctic plant communities are dominated by lichens and mosses which accumulate semivolatile organic compounds (SOCs) such as polybrominated diphenyl ethers (PBDEs) directly from the atmosphere. Differences in the levels of PBDEs observed in lichens and mosses collected at King George Island in the austral summers 2004-05 and 2005-06 are probably explained by environmental and/or plant parameters. Contamination of lichens showed a positive correlation with local precipitation, suggesting that wet deposition processes are a major mechanism controlling the uptake of most PBDE congeners. These findings are in agreement with physical-chemical data supporting that tetra- through hepta-BDEs in the Antarctic atmosphere are basically bound to aerosols. Conversely, accumulation of PBDEs in mosses appears to be controlled by other environmental factors and/or plant-specific characteristics. Model simulations demonstrated that an ocean-atmosphere coupling may have played a role in the long-range transport of less volatile SOCs such as PBDEs to Antarctica. According to simulations, the atmosphere is the most important transport medium for PBDEs while the surface ocean serves as a temporary storage compartment, boosting the deposition/volatilization ""hopping"" effect similarly to vegetation on continents. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three chemical species related to biomass burning, levoglucosan, potassium and water-soluble organic carbon (WSOC), were measured in aerosol samples collected in a rural area on the outskirts of the municipality of Ourinhos (Sao Paulo State, Brazil). This region is representative of the rural interior of the State, where the economy is based on agro-industrial production, and the most important crop is sugar cane. The manual harvesting process requires that the cane be first burned to remove excess foliage, leading to large emissions of particulate materials to the atmosphere. Most of the levoglucosan (68-89%) was present in small particles (<1.5 mu m), and its concentration in total aerosol ranged from 25 to 1186 ng m(-3). The highest values were found at night, when most of the biomass burning occurs. In contrast, WSOC showed no diurnal pattern, with an average concentration of 5.38 +/- 2.97 mu g m(-3) (n = 27). A significant linear correlation between levoglucosan and WSOC (r = 0.54; n = 26; p < 0.0001) confirmed that biomass burning was in fact an important source of WSOC in the study region. A moderate (but significant) linear correlation between levoglucosan and potassium concentrations (r = 0.62; n = 40; p < 0.0001) was indicative of the influence of other sources of potassium in the study region, such as soil resuspension and fertilizers. When only the fine particles (<1.5 pm; typical of biomass burning) were considered, the linear coefficient increased to 0.91 (n = 9). In this case, the average levoglucosan/K+ ratio was 0.24, which may be typical of biomass burning in the study region. This ratio is about 5 times lower than that previously found for Amazon aerosol collected during the day, when flaming combustion prevails. This suggests that the levoglucosan/K+ ratio may be especially helpful for characterization of the type of vegetation burned (such as crops or forest), when biomass-burning is the dominant source of potassium. The relatively high concentrations of WSOC (and inorganic ions) suggest an important influence on the formation of cloud condensation nuclei, which is likely to affect cloud formation and precipitation patterns. (C) 2012 Elsevier Ltd. All rights reserved.