10 resultados para Absorption Measurements
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objective: The objective of this study was to analyze the bacterial morphology by atomic force microscopy (AFM) after the application of low-level laser therapy (LLLT) in in vitro culture of Staphylococcus aureus ATCC 29213. Background data: Infections caused by S. aureus are among the highest occurring in hospitals and can often colonize pressure ulcers. LLLT is among the methods used to accelerate the healing of ulcers. However, there is no consensus on its effect on bacteria. Materials and methods: After being cultivated and seeded, the cultures were irradiated using wavelengths of 660, 830, and 904 nm at fluences of 0, 1, 2, 3, 4, 5, and 16 J/cm(2). Viable cells of S. aureus strain were counted after 24 h incubation. To analyze the occurrence of morphological changes, the topographical measurement of bacterial cells was analyzed using the AFM. Results: The overall assessment revealed that the laser irradiation reduced the S. aureus growth using 830 and 904 nm wavelengths; the latter with the greatest inhibition of the colony-forming units (CFU/mL) (331.1 +/- 38.19 and 137.38 +/- 21.72). Specifically with 660 nm, the statistical difference occurred only at a fluence of 3 J/cm(2). Topographical analysis showed small changes in morphological conformity of the samples tested. Conclusions: LLLT reduced the growth of S. aureus with 830 and 904 nm wavelengths, particularly with 904 nm at a fluence of 3 J/cm(2), where the greatest topographical changes of the cell structure occurred.
Resumo:
Large conurbations are a significant source of the anthropogenic pollution and demographic differences between cities that result in a different pollution burden. The metropolitan area of Sao Paulo (MASP, population 20 million) accounts for one fifth of the Brazilian vehicular fleet. A feature of MASP is the amount of ethanol used by the vehicular fleet, known to exacerbate air quality. The study describes the diurnal behaviour of the submicron aerosol and relies on total particle number concentration, particle number size distribution, light scattering and light absorption measurements. Modelled planetary boundary layer (PBL) depth and air mass movement data were used to aid the interpretation. During morning rush-hour, stagnant air and a shallow PBL height favour the accumulation of aerosol pollution. During clear-sky conditions, there was a wind shift towards the edge of the city indicating a heat island effect with implications on particulate pollution levels at the site. The median total particle number concentration for the submicron aerosol typically varied in the range 1.6 x 10(4)-3.2 x 10(4) cm(-3) frequently exceeding 4 x 10(4) cm-3 during the day. During weekdays, nucleation-mode particles are responsible for most of the particles by numbers. The highest concentrations of total particle number concentrations and black carbon (BC) were observed on Fridays. Median diurnal values for light absorption and light scattering (at 637 nm wavelength) varied in the range 12-33 Mm(-1) and 21-64 Mm(-1), respectively. The former one is equal to 1.8-5.0 mu g m(-3) of BC. The growth of the PBL, from the morning rush-hour until noon, is consistent with the diurnal cycle of BC mass concentrations. Weekday hourly median single-scattering albedo (omega(0)) varied in the range 0.59-0.76. Overall, this suggests a top of atmosphere (TOA) warming effect. However, considering the low surface reflectance of urban areas, for the given range of omega(0), the TOA radiative forcing can be either positive or negative for the sources within the MASP. On the average, weekend omega(0) values were 0.074 higher than during weekdays. During 11% of the days, new particle formation (NPF) events occurred. The analysed events growth rates ranged between 9 and 25 nm h(-1). Sulphuric acid proxy concentrations calculated for the site were less than 5% of the concentration needed to explain the observed growth. Thus, other vapours are likely contributors to the observed growth.
Resumo:
The control of the properties of materials at the molecular level is pursued for many applications, especially those associated with nanostructures. In this paper, we show that the coordination compound [Ni(dmit)(2)], where (dmit) is the 1,3-dithiole-2-thione-4,5-dithiolate ligand, can induce doping of poly(2-methoxyaniline) (POMA) in molecularly ordered Langmuir and Langmuir-Blodgett (LB) films. Doping was associated with interactions between the components and the compression of the Langmuir film at the air-water interface, according to polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) data. Taking these results together with in situ UV-Vis absorption measurements, we could identify the molecular groups involved in the interaction, including the way they were reoriented upon film compression. The Langmuir films were sufficiently stable to be transferred as Y-type LB films, while the hybrid POMA/[Ni(dmit)(2)] films remain doped in the solid state. As expected, the molecular charges affected the film morphology, as observed from combined atomic and electric force microscopy measurements. In summary, with adequate spectroscopy and microscopy tools we characterized molecular-level interactions, which may allow one to design molecular electronic devices with controlled electrical properties.
Resumo:
Manganese tungstate (MnWO4) nanorods were prepared at room temperature by the co-precipitation method and synthesized after processing in a microwave-hydrothermal (MH) system at 140 degrees C for 6-96 min. These nanorods were structurally characterized by X-ray diffraction (XRD), Rietveld refinements and Fourier transform (FT)-Raman spectroscopy. The growth direction, shape and average size distribution of nanorods were observed by means of transmission electron microscopy (TEM) and high resolution TEM (HR-TEM). The optical properties of the nanorods were investigated by ultraviolet visible (UV-vis) absorption and photoluminescence (PL) measurements. XRD patterns, Rietveld refinement data and FT-Raman spectroscopy indicate that the MnWO4 precipitate is not a single phase structure while the nanorods synthesized by MH processing have a wolframite-type monoclinic structure without deleterious phases. FT-Raman spectra exhibited the presence of 17 Raman-active modes from 50 to 1,000 cm(-1). TEM and HR-TEM micrographs indicated that the nanorods are aggregated due to surface energy by Van der Waals forces and grow along the [100] direction. UV-vis absorption measurements confirmed non-linear values for the optical band gap (from 3.2 to 2.72 eV), which increased as the MH processing time increased. The structural characterizations indicated that the presence of defects in the MnWO4 precipitate promotes a significant contribution to maximum PL emission, while MnWO4 nanorods obtained by MH processing decrease the PL emission due to the reduction of defects in the lattice.
Resumo:
Barium praseodymium tungstate (Ba1-xPr2x/3)WO4 crystals with (x = 0, 0.01, and 0.02) were prepared by the coprecipitation method. These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements, Fourier-transform Raman (FT-Raman) and Fourier-transform infrared (FT-IR) spectroscopies. The shape and size of these crystals were observed by field emission scanning electron microcopy (FE-SEM). Their optical properties were investigated by ultraviolet visible (UV-vis) absorption and photoluminescence (PL) measurements. Moreover, we have studied the photocatalytic (PC) activity of crystals for degradation of rhodamine B (RhB) dye. XRD patterns, Rietveld refinements data, FT-Raman and FT-IR spectroscopies indicate that all crystals exhibit a tetragonal structure without deleterious phases. FT-Raman spectra exhibited 13 Raman-active modes in a range from 50 to 1000 cm(-1), while FT-IR spectra have 8 infrared active modes in a range from 200 to 1050 cm(-1). FE-SEM images showed different shapes (bonbon-, spindle-, rice-and flake-like) as well as a reduction in the crystal size with an increase in Pr3+ ions. A possible growth process was proposed for these crystals. UV-vis absorption measurements revealed a decrease in optical band gap values with an increase of Pr3+ into the matrix. An intense green PL emission was noted for (Ba1-xPr2x/3)WO4 crystals (x = 0), while crystals with (x = 0.01 and 0.02) produced a reduction in the wide band PL emission and the narrow band PL emission which is related to f-f transitions from Pr3+ ions. High photocatalytic efficiency was verified for the bonbon-like BaWO4 crystals as a catalyst in the degradation of the RhB dye after 25 min under UV-light. Finally, we discuss possible mechanisms for PL and PC properties of these crystals.
Resumo:
The Er3+-Yb3+ co-doped MgAl2O4 phosphor powders have been prepared by the combustion method. The phosphor powders are well characterized by X-ray diffraction (XRD) and energy dispersive (EDX) techniques. The absorption spectrum of Er3+/Er3+-Yb3+ doped/co-doped phosphor powder has been recorded in the UV-Vis-NIR region of the electro-magnetic spectrum. The evidence for indirect pumping under 980 nm excitation of Er3+ from Yb3+ was observed in the MgAl2O4 matrix material. Electron spin resonance (ESR) studies were carried out to identify the defect centres responsible for the thermally stimulated luminescence (TSL) process in MgAl2O4:Er3+ phosphor. Three defect centres were identified in irradiated phosphor by ESR measurements which were carried out at room temperature and these were assigned to an O- ion and F+ centres. O- ion (hole centre) appears to correlate with the low temperature TSL peak at 210 A degrees C and one of the F+ centres (electron centre) is related to the high temperature peak at 460 A degrees C.
Resumo:
We investigate the occurrence of the optical Kerr effect and two-photon absorption when an oil-based magnetic Fe3O4 nanoparticles colloidal suspension is illuminated with high intensity femtosecond laser pulses. The frequency of the pulses is controlled and the Z-scan technique is employed in our measurements of the nonlinear optical Kerr coefficient (n(2)) and two-photon absorption coefficient (beta). From these values it was possible to calculate the real and imaginary parts of the third-order susceptibility. We observed that increasing the pulse frequency, additional physical processes take place, increasing artificially the absolute values of n(2) and beta. The experimental conditions are discussed to assure the obtention of reliable values of these nonlinear optical parameters, which may be useful in all-optical switching and optical power limiting applications. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4723829]
Resumo:
We measured the K-41 thermal neutron absorption and resonance integral cross sections after the irradiation of KNO3 samples near the core of the IEA-R1 IPEN pool-type research reactor. Bare and cadmium-covered targets were irradiated in pairs with Au-Al alloy flux-monitors. The residual activities were measured by gamma-ray spectroscopy with a HPGe detector, with special care to avoid the K-42 decay beta(-) emission effects on the spectra. The gamma-ray self-absorption was corrected with the help of MCNP simulations. We applied the Westcott formalism in the average neutron flux determination and calculated the depression coefficients for thermal and epithermal neutrons due to the sample thickness with analytical approximations. We obtained 1.57(4) and 1.02(4) b, for thermal and resonance integral cross sections, respectively, with correlation coefficient equal to 0.39.
Resumo:
A procedure has been proposed by Ciotti and Bricaud (2006) to retrieve spectral absorption coefficients of phytoplankton and colored detrital matter (CDM) from satellite radiance measurements. This was also the first procedure to estimate a size factor for phytoplankton, based on the shape of the retrieved algal absorption spectrum, and the spectral slope of CDM absorption. Applying this method to the global ocean color data set acquired by SeaWiFS over twelve years (1998-2009), allowed for a comparison of the spatial variations of chlorophyll concentration ([Chl]), algal size factor (S-f), CDM absorption coefficient (a(cdm)) at 443 nm, and spectral slope of CDM absorption (S-cdm). As expected, correlations between the derived parameters were characterized by a large scatter at the global scale. We compared temporal variability of the spatially averaged parameters over the twelve-year period for three oceanic areas of biogeochemical importance: the Eastern Equatorial Pacific, the North Atlantic and the Mediterranean Sea. In all areas, both S-f and a(cdm)(443) showed large seasonal and interannual variations, generally correlated to those of algal biomass. The CDM maxima appeared in some occasions to last longer than those of [Chl]. The spectral slope of CDM absorption showed very large seasonal cycles consistent with photobleaching, challenging the assumption of a constant slope commonly used in bio-optical models. In the Equatorial Pacific, the seasonal cycles of [Chl], S-f, a(cdm)(443) and S-cdm, as well as the relationships between these parameters, were strongly affected by the 1997-98 El Ni o/La Ni a event.
Resumo:
In the last years, extensive research has been devoted to develop novel materials and structures with high electrochemical performance for intermediate-temperatures solid-oxide fuel cells (IT-SOFCs) electrodes. In recent works, we have investigated the structural and electrochemical properties of La0:6Sr0:4CoO3 (LSCO) and La0:6Sr0:4Co1¡yFeyO3 (LSCFO) nanostructured cathodes, finding that they exhibit excellent electrocatalytic properties for the oxygen reduction reaction [1,2]. These materials were prepared by a pore-wetting technique using polycarbonate porous membranes as templates. Two average pore sizes were used: 200 nm and 800 nm. Our scanning electronic microscopy (SEM) study showed that the lower pore size yielded nanorods, while nanotubes were obtained with the bigger pore size. All the samples were calcined at 1000oC in order to produce materials with the desired perovskite-type crystal structure. In this work, we analyze the oxidation states of Co and Fe and the local atomic order of LSCO and LSCFO nanotubes and nanowires for various compositions. For this pur- pose we performed XANES and EXAFS studies on both Co and Fe K edges. These measurements were carried out at the D08B-XAFS2 beamline of the Brazilian Synchrotron Light Laboratory (LNLS). XANES spectroscopy showed that Co and Fe only change slightly their oxidation state upon Fe addition. Surprisingly, XANES results indicated that the content of oxygen vacancies is low, even though it is well-known that these materials are mixed ionic-electronic conductors. EXAFS results were consistent with those expected according to the rhombohedral crystal structure determined in previous X-ray powder dffraction investigations. [1] M.G. Bellino et al, J. Am. Chem. Soc. 129 (2007) 3066 [2] J.G. Sacanell et al., J. Power Sources 195 (2010) 1786