7 resultados para Absorbentes textiles
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Cultivation of sisal, a plant with a short growth cycle, is highly productive in Brazil. This work is part of extensive research in which sisal is valued. In these studies, sisal fibers are used in the preparation of bio-based composites and in the derivatization of the pulp, including posterior preparation of films. This study aimed to examine the use of sisal pulp in the production of bioethanol, which can potentially be a high efficiency process because of the cellulose content of this fiber. A previous paper addressed the hydrolysis of sisal pulp using sulfuric acid as a catalyst. In the present study, the influence of the mercerization process on the acid hydrolysis of sisal pulp was evaluated. Mercerization was achieved in a 20% wt NaOH solution, and the cellulosic pulp was suspended and vigorously mixed for 1, 2 and 3 h, at 50 A degrees C. The previously characterized mercerized pulps were hydrolyzed (100 A degrees C, 30% H2SO4, v/v), and the results are compared with those obtained for unmercerized pulp (described in a companion paper). The starting sample was characterized by viscometry, alpha-cellulose content, crystallinity index and scanning electron microscopy. During the reactions, aliquots were withdrawn, and the liquor was analyzed by HPLC. The residual pulps (non-hydrolyzed) were also characterized by the techniques described for the initial sample. The results revealed that pretreatment decreases the polyoses content as well as causes a decrease of up to 23% in the crystallinity and up to 21% in the average molar mass of cellulose after 3 h of mercerization. The mercerization process proved to be very important to achieve the final target. Under the same reaction conditions (30% and 100 A degrees C, 6 h), the hydrolysis of mercerized pulp generated yields of up to 50% more glucose. The results of this paper will be compared with the results of subsequent studies obtained using other acids, and enzymes, as catalysts.
Resumo:
In the present study the effect of relative humidity (RH) during spin-coating process on the structural characteristics of cellulose acetate (CA), cellulose acetate phthalate (C-A-P), cellulose acetate butyrate (CAB) and carboxymethyl cellulose acetate butyrate (CMCAB) films was investigated by means of atomic force microscopy (AFM), ellipsometry and contact angle measurements. All polymer solutions were prepared in tetrahydrofuran (THF), which is a good solvent for all cellulose esters, and used for spin-coating at RH of (35 +/- A 5)%, (55 +/- A 5)% or (75 +/- A 5)%. The structural features were correlated with the molecular characteristics of each cellulose ester and with the balance between surface energies of water and THF and interface energy between water and THF. CA, CAB, CMCAB and C-A-P films spin-coated at RH of (55 +/- A 5)% were exposed to THF vapor during 3, 6, 9, 60 and 720 min. The structural changes on the cellulose esters films due to THF vapor exposition were monitored by means of AFM and ellipsometry. THF vapor enabled the mobility of cellulose esters chains, causing considerable changes in the film morphology. In the case of CA films, which are thermodynamically unstable, dewetting was observed after 6 min exposure to THF vapor. On the other hand, porous structures observed for C-A-P, CAB and CMCAB turned smooth and homogeneous after only 3 min exposure to THF vapor.
Resumo:
The properties of films of carboxymethyl cellulose, CMC, of different degree of substitution, DS, have been examined by the use of perichromic indicators (probes). The film properties that have been determined are: empirical polarity, E-T(33); "acidity", alpha; "basicity", beta; and dipolarity/polarizability, pi*. This has been achieved by employing the following perichromic probes: 4-nitroaniline, 4-nitroanisole, 4-nitro-N,N-dimethylaniline, and 2,6-dichloro-4-(2,4,6-triphenyl-pyridinium-1-yl)phenolate, WB. The correlations between both E-T(33)- or pi* and DS were found to be linear; that between beta and DS is a second order polynomial; no obvious correlation was found between alpha and DS. The polarities of CMC films are in the range of those of butyl alcohols. As models for CMC, we have employed cellulose plus CMC of high DS; oxidized cellulose with degree of oxidation = 0.5; sodium glucuronate. The former model behaved akin to CMC, but the plots of the perichromic properties versus DS showed different slopes/intercepts. FTIR data and molecular dynamics simulations on the solvation of WB have shown that this difference can be traced to more efficient hydrogen bonding between the film of the model and the probe. This affects the intra-molecular charge-transfer energy of the latter, leading to different responses to the variation of DS. Based on the excellent linear correlation between E-T(33) and DS, for CMC from different origins, we suggest that perichromism is a simple, accurate, and expedient alternative for the determination of DS of the biopolymer derivative.
Resumo:
The kinetics of the homogeneous acylation of microcrystalline cellulose, MCC, with carboxylic acid anhydrides with different acyl chain-length (Nc; ethanoic to hexanoic) in LiCl/N,N-dimethylacetamide have been studied by conductivity measurements from 65 to 85 A degrees C. We have employed cyclohexylmethanol, CHM, and trans-1,2-cyclohexanediol, CHD, as model compounds for the hydroxyl groups of the anhydroglucose unit of cellulose. The ratios of rate constants of acylation of primary (CHM; Prim-OH) and secondary (CHD; Sec-OH) groups have been employed, after correction, in order to split the overall rate constants of the reaction of MCC into contributions from the discrete OH groups. For the model compounds, we have found that k((Prim-OH))/k((Sec-OH)) > 1, akin to reactions of cellulose under heterogeneous conditions; this ratio increases as a function of increasing Nc. The overall, and partial rate constants of the acylation of MCC decrease from ethanoic- to butanoic-anhydride and then increase for pentanoic- and hexanoic anhydride, due to subtle changes in- and compensations of the enthalpy and entropy of activation.
Resumo:
This work aimed to study the characteristics of the fibres of the species Bactris setosa ('tucum') used by close-knit social groups, located in Sorocaba - Sao Paulo - Brazil, in basket-making techniques, for possible applications in textile activity. Optical microscopy (NBR 13 538:1995) and Tensile Properties (ASTM D 3 822-2001) were used to assess properties such as the fibre structre, linear density, breaking force, elongation at break and breaking tenacity of each species. Bactris setosa showed a longitudinal view similar to that of sisal; an average linear density of 41.2 tex, a tenacity average of 11.96 cN/tex, closer to fiberglass, and an elongation ranging between 1.35 and 3.87%. It is important to clarify the delicacy and detail of the tests, and from this we highlight the importance of carrying out these studies, based on which science and technology must be linked with socio-environmental aspects.
Resumo:
The present work is inserted into the broad context of the upgrading of lignocellulosic fibers. Sisal was chosen in the present study because more than 50% of the world's sisal is cultivated in Brazil, it has a short life cycle and its fiber has a high cellulose content. Specifically, in the present study, the subject addressed was the hydrolysis of the sisal pulp, using sulfuric acid as the catalyst. To assess the influence of parameters such as the concentration of the sulfuric acid and the temperature during this process, the pulp was hydrolyzed with various concentrations of sulfuric acid (30-50%) at 70 A degrees C and with 30% acid (v/v) at various temperatures (60-100 A degrees C). During hydrolysis, aliquots were withdrawn from the reaction media, and the solid (non-hydrolyzed pulp) was separated from the liquid (liquor) by filtering each aliquot. The sugar composition of the liquor was analyzed by HPLC, and the non-hydrolyzed pulps were characterized by viscometry (average molar mass), and X-ray diffraction (crystallinity). The results support the following conclusions: acid hydrolysis using 30% H2SO4 at 100 A degrees C can produce sisal microcrystalline cellulose and the conditions that led to the largest glucose yield and lowest decomposition rate were 50% H2SO4 at 70 A degrees C. In summary, the study of sisal pulp hydrolysis using concentrated acid showed that certain conditions are suitable for high recovery of xylose and good yield of glucose. Moreover, the unreacted cellulose can be targeted for different applications in bio-based materials. A kinetic study based on the glucose yield was performed for all reaction conditions using the kinetic model proposed by Saeman. The results showed that the model adjusted to all 30-35% H2SO4 reactions but not to greater concentrations of sulfuric acid. The present study is part of an ongoing research program, and the results reported here will be used as a comparison against the results obtained when using treated sisal pulp as the starting material.
Resumo:
In a previous work, succinylated sugarcane bagasse (SCB 2) was prepared from sugarcane bagasse (B) using succinic anhydride as modifying agent. In this work the adsorption of cationic dyes onto SCB 2 from aqueous solutions was investigated. Methylene blue, MB, and gentian violet, GV, were selected as adsorbates. The capacity of SCB 2 to adsorb MB and GV from aqueous single dye solutions was evaluated at different contact times, pH, and initial adsorbent concentration. According to the obtained results, the adsorption processes could be described by the pseudo-second-order kinetic model. Adsorption isotherms were well fitted by Langmuir model. Maximum adsorption capacities for MB and GV onto SCB 2 were found to be 478.5 and 1273.2 mg/g, respectively. (C) 2011 Elsevier Ltd. All rights reserved.