29 resultados para ATP SYNTHASE

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crotalphine, a 14 amino acid peptide first isolated from the venom of the South American rattlesnake Crotalus durissus terrificus, induces a peripheral long-lasting and opioid receptor-mediated antinociceptive effect in a rat model of neuropathic pain induced by chronic constriction of the sciatic nerve. In the present study, we further characterized the molecular mechanisms involved in this effect, determining the type of opioid receptor responsible for this effect and the involvement of the nitric oxide-cyclic GMP pathway and of K+ channels. Crotalphine (0.2 or 5 mu g/kg, orally; 0.0006 mu g/paw), administered on day 14 after nerve constriction, inhibited mechanical hyperalgesia and low-threshold mechanical allodynia. The effect of the peptide was antagonized by intraplantar administration of naltrindole, an antagonist of delta-opioid receptors, and partially reversed by norbinaltorphimine, an antagonist of kappa-opioid receptors. The effect of crotalphine was also blocked by 7-nitroindazole, an inhibitor of the neuronal nitric oxide synthase; by 1H-(1,2,4) oxadiazolo[4,3-a]quinoxaline-1-one, an inhibitor of guanylate cyclase activation; and by glibenclamide, an ATP-sensitive K+ channel blocker. The results suggest that peripheral delta-opioid and kappa-opioid receptors, the nitric oxide-cyclic GMP pathway, and ATP-sensitive K+ channels are involved in the antinociceptive effect of crotalphine. The present data point to the therapeutic potential of this peptide for the treatment of chronic neuropathic pain. Behavioural Pharmacology 23:14-24 (C) 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO), produced by endothelial nitric oxide synthase (eNOS), is a potent vasodilator and plays a prominent role in regulating the cardiovascular system. Decreased basal NO release may predispose to cardiovascular diseases. Evidence suggests that the 27 nt repeat polymorphism of the intron 4 in the eNOS gene may regulate eNOS expression. On the other hand, some recent reports strongly suggest an association between methylmercury (MeHg) exposures and altered NO synthesis. In the present study, we investigate the contribution of the 27-pb tandem repeat polymorphism on nitric oxide production, which could enhance susceptibility to cardiovascular disease in the MeHg-exposed study population. Two-hundred-two participants (98 men and 104 women), all chronically exposed to MeHg through fish consumption were examined. Mean blood Hg concentration and nitrite plasma concentration were 50.5 +/- 35.4 mu g/L and 251.4 +/- 106.3 nM, respectively. Mean systolic and diastolic blood pressure were 120.1 +/- 19.4 mm Hg and 72.0 +/- 10.6 mm Hg, respectively. Mean body mass index was 24.5 +/- 4.3 kg/m(2) and the mean heart rate was 69.8 +/- 11.8 bpm. There were no significant differences in age, arterial blood pressure, body mass index or cardiac frequency between genotype groups (all P>0.05). However, we observed different nitrite concentrations in the genotypes groups, with lower nitrite levels for the 4a4a genotype carriers. Age, gender and the presence of intron 4 polymorphism contributed to nitrite reduction as a result of blood Hg concentration. Taken together, our results show that the 27 nt repeat polymorphism of the intron 4 in the eNOS gene increases susceptibility to cardiovascular diseases after MeHg exposure by modulating nitric oxide levels. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Plasmodium has a complex cell biology and it is essential to dissect the cell-signalling pathways underlying its survival within the host. Methods: Using the fluorescence resonance energy transfer (FRET) peptide substrate Abz-AIKFFARQ-EDDnp and Fluo4/AM, the effects of extracellular ATP on triggering proteolysis and Ca2+ signalling in Plasmodium berghei and Plasmodium yoelii malaria parasites were investigated. Results: The protease activity was blocked in the presence of the purinergic receptor blockers suramin (50 mu M) and PPADS (50 mu M) or the extracellular and intracellular calcium chelators EGTA (5 mM) and BAPTA/AM (25, 100, 200 and 500 mu M), respectively for P. yoelii and P. berghei. Addition of ATP (50, 70, 200 and 250 mu M) to isolated parasites previously loaded with Fluo4/AM in a Ca2+-containing medium led to an increase in cytosolic calcium. This rise was blocked by pre-incubating the parasites with either purinergic antagonists PPADS (50 mu M), TNP-ATP (50 mu M) or the purinergic blockers KN-62 (10 mu M) and Ip5I (10 mu M). Incubating P. berghei infected cells with KN-62 (200 mu M) resulted in a changed profile of merozoite surface protein 1 (MSP1) processing as revealed by western blot assays. Moreover incubating P. berghei for 17 h with KN-62 (10 mu M) led to an increase in rings forms (82% +/- 4, n = 11) and a decrease in trophozoite forms (18% +/- 4, n = 11). Conclusions: The data clearly show that purinergic signalling modulates P. berghei protease(s) activity and that MSP1 is one target in this pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Abnormal regulation of glycogen synthase kinase 3-beta (GSK3B) activity has been implicated in the pathophysiology of mood disorders. Many pharmacological agents, including antidepressants, can modulate GSK3B. The aim of the present study was to investigate the effect of short-and long-term sertraline treatment on the expression and phosphorylation of GSK3B in platelets of patients with late-life major depression. Methods: Thirty-nine unmedicated elderly adults with major depressive disorder (MOD) were initially included in this study. The comparison group comprised 18 age-matched, healthy individuals. The expression of total and Ser-9 phosphorylated GSK3B (pGSK3B) was determined by Enzyme Immunometric Assay (EIA) in platelets of patients and controls at baseline, and after 3 and 12 months of sertraline treatments for patients only. During this period, patients were continuously treated with therapeutic doses of sertraline. GSK3B activity was indirectly estimated by calculating the proportion of inactive (phosphorylated) forms (pGSK3B) in relation to the total expression of the enzyme (i.e.. GSK3B ratio). Results: Depressed patients had significantly higher levels of pGSK3B as compared to controls (p < 0.001). Within the MDD group, after 3 months of sertraline treatment no significant changes were observed in GSK3B expression and phosphorylation state, as compared to baseline levels. However, after 12 months of treatment we found a significant increase in the expression of total GSK3B (p = 0.05), in the absence of any significant changes in pGSK3B (p = 0.12), leading to a significant reduction in GSK3B ratio (p = 0.001). Conclusions: Our findings indicate that GSK3B expression was upregulated by the continuous treatment with sertraline, along with an increment in the proportion of active forms of the enzyme. This is compatible with an increase in overall GSK3B activity, which may have been induced by the long-term treatment of late-life depression with sertraline. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated modulation by ATP, Mg2+, Na+, K+ and NH4 (+) and inhibition by ouabain of (Na+,K+)-ATPase activity in microsomal homogenates of whole zoeae I and decapodid III (formerly zoea IX) and whole-body and gill homogenates of juvenile and adult Amazon River shrimps, . (Na+,K+)-ATPase-specific activity was increased twofold in decapodid III compared to zoea I, juveniles and adults, suggesting an important role in this ontogenetic stage. The apparent affinity for ATP ( (M) = 0.09 +/- A 0.01 mmol L-1) of the decapodid III (Na+,K+)-ATPase, about twofold greater than the other stages, further highlights this relevance. Modulation of (Na+,K+)-ATPase activity by K+ also revealed a threefold greater affinity for K+ ( (0.5) = 0.91 +/- A 0.04 mmol L-1) in decapodid III than in other stages; NH4 (+) had no modulatory effect. The affinity for Na+ ( (0.5) = 13.2 +/- A 0.6 mmol L-1) of zoea I (Na+,K+)-ATPase was fourfold less than other stages. Modulation by Na+, Mg2+ and NH4 (+) obeyed cooperative kinetics, while K+ modulation exhibited Michaelis-Menten behavior. Rates of maximal Mg2+ stimulation of ouabain-insensitive ATPase activity differed in each ontogenetic stage, suggesting that Mg2+-stimulated ATPases other than (Na+,K+)-ATPase are present. Ouabain inhibition suggests that, among the various ATPase activities present in the different stages, Na+-ATPase may be involved in the ontogeny of osmoregulation in larval The NH4 (+)-stimulated, ouabain-insensitive ATPase activity seen in zoea I and decapodid III may reflect a stage-specific means of ammonia excretion since functional gills are absent in the early larval stages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite derived from leucine. The anti-catabolic effect of HMB is well documented but its effect upon skeletal muscle strength and fatigue is still uncertain. In the present study, male Wistar rats were supplemented with HMB (320 mg/kg per day) for 4 weeks. Placebo group received saline solution only. Muscle strength (twitch and tetanic force) and resistance to acute muscle fatigue of the gastrocnemius muscle were evaluated by direct electrical stimulation of the sciatic nerve. The content of ATP and glycogen in red and white portions of gastrocnemius muscle were also evaluated. The effect of HMB on citrate synthase (CS) activity was also investigated. Muscle tetanic force was increased by HMB supplementation. No change was observed in time to peak of contraction and relaxation time. Resistance to acute muscle fatigue during intense contractile activity was also improved after HMB supplementation. Glycogen content was increased in both white (by fivefold) and red (by fourfold) portions of gastrocnemius muscle. HMB supplementation also increased the ATP content in red (by twofold) and white (1.2-fold) portions of gastrocnemius muscle. CS activity was increased by twofold in red portion of gastrocnemius muscle. These results support the proposition that HMB supplementation have marked change in oxidative metabolism improving muscle strength generation and performance during intense contractions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Galectin-3 has been implicated in the tumor development via its mediation of the Wnt signaling pathway. Likewise, glycogen synthase kinase-3beta (GSK3 beta) also plays a role in the Wnt signaling pathway by controlling the levels of cytoplasmic beta-catenin. Altered GSK3 beta expression has been described in various tumors, but to date, there are no studies evaluating its expression in models of oral carcinogenesis. Additionally, it is unknown whether the absence of galectin-3 regulates the expression of GSK3 beta. To this end, Gal3-deficient (Gal3(-/-)) and wild-type (Gal3(+/+)) male mice were treated with 4NQO for 16 weeks and sacrificed at week 16 and 32. The tongues were removed, processed, and stained with H&E to detect dysplasias and carcinomas. An immunohistochemical assay was performed to determine the level of P-GSK3 beta-Ser9 expression in both groups. Carcinomas were more prevalent in Gal3(+/+) than Gal3(-/-) mice (55.5% vs. 28.5%), but no statistical difference was reached. In the dysplasias, the proportion of cells positive for P-GSK3 beta-Ser9 was slightly higher in Gal3(+/+) than Gal3(-/-) mice (63% vs. 61%). In the carcinomas, a significant difference between Gal3(+/+) and Gal3(-/-) mice was found (74% vs. 59%; p=0.02). P-GSK3 beta-Ser9-positive cells slightly decreased from the progression of dysplasias to carcinomas in Gal3(-/-) mice (61% vs. 59%; p>0.05). However, a significant increase in P-GSK3 beta-Ser9 expression was observed from dysplasias to carcinomas in Gal3(+/+) mice (63% vs. 74%; p=0.01). In conclusion, these findings suggest that fully malignant transformation of the tongue epithelium is associated with increased P-GSK3 beta-Ser9 expression in Gal3(+/+) mice, but not in Gal3(-/-) mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aimed to investigate the association of endothelial nitric oxide synthase (eNOS) gene polymorphisms with primary open angle glaucoma (POAG). We conducted a case-control study that included 90 patients with POAG and 127 healthy controls whose blood samples were genotyped for the functional polymorphisms T-786C and Glu298Asp of the eNOS gene by Taqman fluorescent allelic discrimination assay. The T-786C polymorphism was significantly associated as a risk factor for POAG among women (OR: 228; 95% CI: 1.11 to 4.70, p = 0.024) and marginally associated to the risk of POAG in the patients >= 52 years of age at diagnosis (OR: 2.11; 95% CI: 0.98 to 4.55, p = 0,055). However, these results was not confirmed after adjustments for gender, age, self-declared skin color, tobacco smoking and eNOS genotypes by multivariate logistic regression model (OR: 2.08; 95% CI: 0.87 to 5.01, p = 0.101 and OR: 2.20; 95% CI: 0.95 to 5.12, p = 0.067, respectively). The haplotype CG of T-786C and Glu298Asp showed a borderline association with risk of POAG in the overall analysis (OR: 1.76; 95% CI: 0.98 to 3.14, p = 0.055) and among women (OR: 2.02; 95% CI: 0.98 to 4.16, p = 0.052). Furthermore, the CG haplotype was significantly associated with the development of POAG for the age at diagnosis group >= 52 years (OR: 3.48; 95% CI: 1.54 to 7.84, p = 0.002). We suggested that haplotypes of the polymorphisms T-786C and Glu298Asp of eNOS may interact with gender and age in modulating the risk of POAG. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In silico comparison of 34 putative pks genes in Aspergillus niger strain CBS 513.88 versus A. niger strain ATCC 1015 genome revealed significant nucleotide identity (>95% covering a minimum of 99% of the gene sequence) for 31 of these genes (approximately 91%). A. niger CBS 513.88 harbors three putative pks genes (An01g01130, An11g05940, and An15g07920), for which nucleotide identity was not found in A. niger ATCC 1015. To compare the results of the in silico analysis with the in vivo situation, experimental data were obtained for a large number of A. niger strains obtained from different substrates and geographical regions. Three putative Os genes that were found to be variable between the two A. niger strains using bioinformatics tools were in fact strain-specific genes based on experimental data. The PCR amplification signals for the An01g01130, An11g05940, and An15g07920 pks genes were detected in only 97%, 71%, and 26% of the strains, respectively. Southern blot analyses confirmed the PCR data. Because one of the strain-specific pits genes (An15g07920) is located in a putative ochratoxin cluster, we focused our investigation on that region. We assessed the ochratoxin production capability of the 119 A. niger strains and found a positive association between the presence of this pia gene and the capability of the respective strain to produce ochratoxin. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent investigation of the intestine following ischemia and reperfusion (I/R) has revealed that nitric oxide synthase (NOS) neurons are more strongly affected than other neuron types. This implies that NO originating from NOS neurons contributes to neuronal damage. However, there is also evidence of the neuroprotective effects of NO. In this study, we compared the effects of I/R on the intestines of neuronal NOS knockout (nNOS(-/-)) mice and wild-type mice. I/R caused histological damage to the mucosa and muscle and infiltration of neutrophils into the external muscle layers. Damage to the mucosa and muscle was more severe and greater infiltration by neutrophils occurred in the first 24 h in nNOS(-/-) mice. Immunohistochemistry for the contractile protein, alpha-smooth muscle actin, was used to evaluate muscle damage. Smooth muscle actin occurred in the majority of smooth muscle cells in the external musculature of normal mice but was absent from most cells and was reduced in the cytoplasm of other cells following I/R. The loss was greater in nNOS(-/-) mice. Basal contractile activity of the longitudinal muscle and contractile responses to nerve stimulation or a muscarinic agonist were reduced in regions subjected to I/R and the effects were greater in nNOS(-/-) mice. Reductions in responsiveness also occurred in regions of operated mice not subjected to I/R. This is attributed to post-operative ileus that is not significantly affected by knockout of nNOS. The results indicate that deleterious effects are greater in regions subjected to I/R in mice lacking nNOS compared with normal mice, implying that NO produced by nNOS has protective effects that outweigh any damaging effect of this free radical produced by enteric neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kaurenoic acid [ent-kaur-16-en-19-oic acid (1)] is a diterpene present in several plants including Sphagneticola trilobata. The only documented evidence for its antinociceptive effect is that it inhibits the writhing response induced by acetic acid in mice. Therefore, the analgesic effect of 1 in different models of pain and its mechanisms in mice were investigated further. Intraperitoneal and oral treatment with 1 dose-dependently inhibited inflammatory nociception induced by acetic acid. Oral treatment with 1 also inhibited overt nociception-like behavior induced by phenyl-p-benzoquinone, complete Freund's adjuvant (CFA), and both phases of the formalin test. Compound 1 also inhibited acute carrageenin- and PGE(2)-induced and chronic CFA-induced inflammatory mechanical hyperalgesia. Mechanistically, 1 inhibited the production of the hyperalgesic cytokines TNF-alpha and IL-1 beta. Furthermore, the analgesic effect of 1 was inhibited by L-NAME, ODQ, KT5823, and glybenclamide treatment, demonstrating that such activity also depends on activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway, respectively. These results demonstrate that 1 exhibits an analgesic effect in a consistent manner and that its mechanisms involve the inhibition of cytokine production and activation of the NO-cyclic GMP-protein lcinase G-ATP-sensitive potassium channel signaling pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical ecology and biotechnological potential of metabolites from endophytic and rhizosphere fungi are receiving much attention. A collection of 17 sugarcane-derived fungi were identified and assessed by PCR for the presence of polyketide synthase (PKS) genes. The fungi were all various genera of ascomycetes, the genomes of which encoded 36 putative PKS sequences, 26 shared sequence homology with beta-ketoacyl synthase domains, while 10 sequences showed homology to known fungal C-methyltransferase domains. A neighbour-joining phylogenetic analysis of the translated sequences could group the domains into previously established chemistry-based clades that represented non-reducing, partially reducing and highly reducing fungal PKSs. We observed that, in many cases, the membership of each clade also reflected the taxonomy of the fungal isolates. The functional assignment of the domains was further confirmed by in silico secondary and tertiary protein structure predictions. This genome mining study reveals, for the first time, the genetic potential of specific taxonomic groups of sugarcane-derived fungi to produce specific types of polyketides. Future work will focus on isolating these compounds with a view to understanding their chemical ecology and likely biotechnological potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

de Souza ACCP, Volpini RA, Shimizu MH, Sanches TR, Camara NOS, Semedo P, Rodrigues CE, Seguro AC, Andrade L. Erythropoietin prevents sepsis-related acute kidney injury in rats by inhibiting nuclear factor-kappa B and upregulating endothelial nitric oxide synthase. Am J Physiol Renal Physiol 302: F1045-F1054, 2012. First published January 11, 2012; doi:10.1152/ajprenal.00148.2011.-The pathophysiology of sepsis involves complex cytokine and inflammatory mediator networks, a mechanism to which NF-kappa B activation is central. Downregulation of endothelial nitric oxide synthase (eNOS) contributes to sepsis-induced endothelial dysfunction. Erythropoietin (EPO) has emerged as a major tissue-protective cytokine in the setting of stress. We investigated the role of EPO in sepsis-related acute kidney injury using a cecal ligation and puncture (CLP) model. Wistar rats were divided into three primary groups: control (sham-operated); CLP; and CLP + EPO. EPO (4,000 IU/kg body wt ip) was administered 24 and 1 h before CLP. Another group of rats received N-nitro-L-arginine methyl ester (L-NAME) simultaneously with EPO administration (CLP + EPO + L-NAME). A fifth group (CLP + EPOtreat) received EPO at 1 and 4 h after CLP. At 48 h postprocedure, CLP + EPO rats presented significantly higher inulin clearance than did CLP and CLP + EPO + L-NAME rats; hematocrit levels, mean arterial pressure, and metabolic balance remained unchanged in the CLP + EPO rats; and inulin clearance was significantly higher in CLP + EPOtreat rats than in CLP rats. At 48 h after CLP, creatinine clearance was significantly higher in the CLP + EPO rats than in the CLP rats. In renal tissue, pre-CLP EPO administration prevented the sepsis-induced increase in macrophage infiltration, as well as preserving eNOS expression, EPO receptor (EpoR) expression, IKK-alpha activation, NF-kappa B activation, and inflammatory cytokine levels, thereby increasing survival. We conclude that this protection, which appears to be dependent on EpoR activation and on eNOS expression, is attributable, in part, to inhibition of the inflammatory response via NF-kappa B downregulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migraine is a complex neurological disorder with a clear neurogenic inflammatory component apparently including enhanced nitric oxide (NO) formation. Excessive NO amounts possibly contributing to migraine are derived from increased expression and activity of inducible NO synthase (iNOS). We tested the hypothesis that two functional, clinically relevant iNOS genetic polymorphisms (C-1026 A-rs2779249 and G2087A-rs2297518) are associated with migraine with or without aura. We studied 142 healthy women without migraine (control group) and 200 women with migraine divided into two groups: 148 with migraine without aura (MWA) and 52 with aura (MA). Genotypes were determined by real-time polymerase chain reaction using the Taqman (R) allele discrimination assays. The PHASE 2.1 software was used to estimate the haplotypes. The A allele for the G2087A polymorphism was more commonly found in the MA group than in the MWA group (28 vs. 18%; P < 0.05). No other significant differences in the alleles or genotypes distributions were found (P > 0.05). The haplotype combining both A alleles for the two polymorphisms was more commonly found in the MA group than in the control group or in the MWA group (19 vs. 10 or 8%; P = 0.0245 or 0.0027, respectively). Our findings indicate that the G2087A and the C-1026 A polymorphism in the iNOS gene affect the susceptibility to migraine with aura when their effects are combined within haplotypes, whereas the G2087A affects the susceptibility to aura in migraine patients. These finding may have therapeutic implications when examining the effects of selective iNOS inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO) has been pointed out as being the main mediator involved in the hypotension and tissue injury taking place during sepsis. This study aimed to investigate the cellular mechanisms implicated in the acetylcholine (ACh)-induced relaxation detected in aortic rings isolated from rats submitted to cecal ligation and perforation (CLP group), 6 h post-CLP. The mean arterial pressure was recorded, and the concentration-effect curves for ACh were constructed for endothelium-intact aortic rings in the absence (control) or after incubation with one of the following NO synthase inhibitors: L-NAME (non-selective), L-NNA (more selective for eNOS), 7-nitroindazole (more selective for nNOS), or 1400W (selective for iNOS). The NO concentration was determined by using confocal microscopy. The protein expression of the NOS isoforms was quantified by Western blot analysis. The prostacyclin concentration was indirectly analyzed on the basis of 6-keto-prostaglandin F-1 alpha (6-keto-PGF(1 alpha)) levels measured by enzyme immunoassay. There were no differences between Sham- and CLP-operated rats in terms of the relaxation induced by acetylcholine. However, the NOS inhibitors reduced this relaxation in both groups, but this effect remained more pronounced in the CLP group as compared to the Sham group. The acetylcholine-induced NO production was higher in the rat aortic endothelial cells of the CLP group than in those of the Sham group. eNOS protein expression was larger in the CLP group, but the iNOS protein was not verified in any of the groups. The basal 6-keto-PGF(1 alpha) levels were higher in the CLP group, but the acetylcholine-stimulated levels did not increase in CLP as much as they did in the Sham group. Taken together, our results show that the augmented NO production in sepsis syndrome elicited by cecal ligation and perforation is due to eNOS up-regulation and not to iNOS. (C) 2012 Elsevier Inc. All rights reserved.