5 resultados para ATMOSPHERIC CO2

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paleoclimate version of the National Center for Atmospheric Research Community Climate System Model version 3 (NCAR-CCSM3) is used to analyze changes in the water formation rates in the Atlantic, Pacific, and Indian Oceans for the Last Glacial Maximum (LGM), mid-Holocene (MH) and pre-industrial (PI) control climate. During the MH, CCSM3 exhibits a north-south asymmetric response of intermediate water subduction changes in the Atlantic Ocean, with a reduction of 2 Sv in the North Atlantic and an increase of 2 Sv in the South Atlantic relative to PI. During the LGM, there is increased formation of intermediate water and a more stagnant deep ocean in the North Pacific. The production of North Atlantic Deep Water (NADW) is significantly weakened. The NADW is replaced in large extent by enhanced Antarctic Intermediate Water (AAIW), Glacial North Atlantic Intermediate Water (GNAIW), and also by an intensified of Antarctic Bottom Water (AABW), with the latter being a response to the enhanced salinity and ice formation around Antarctica. Most of the LGM intermediate/mode water is formed at 27.4 < sigma(theta) < 29.0 kg/m(3), while for the MH and PI most of the subduction transport occurs at 26.5 < sigma(theta) < 27.4 kg/m(3). The simulated LGM Southern Hemisphere winds are more intense by 0.2-0.4 dyne/cm(2). Consequently, increased Ekman transport drives the production of intermediate water (low salinity) at a larger rate and at higher densities when compared to the other climatic periods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

If riparian buffer zones are ineffective in preventing C-4 plant carbon from upland areas reaching the stream sediment, the composition of stream fauna can be significantly altered. The permeability of riparian forest strips in agricultural, small subtropical watersheds in south-eastern Brazil was measured in nine watersheds categorised according to the predominant land cover of the legally required 30-m buffer riparian zone. Four watersheds with well preserved riparian forest along the 30-m buffer zone were designated as FOREST watersheds; three watersheds, with a predominance of C-4 grasses from sugarcane to pasture, mixed with preserved riparian forests, were designated MIXED watersheds; and two watersheds were termed PASTURE-SUGAR because their entire 30-m buffer zone was covered by C-4 plants. Stable carbon (delta C-13) isotopes were used as tracers of upland C-4 carbon in sediments, suspended particulate organic carbon, terrestrial and aquatic invertebrates and two species of neotropical fish. Although the intact 30-m buffer zone of riparian forests did not entirely prevent the input of C-4 to the river environment and food web, there was a significant increase in C-4 carbon in those watersheds where the buffer zone was not covered by riparian forests. These findings emphasise the importance of riparian forests in mitigating disturbance in streams and support efforts to preserve such riparian corridors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The supply of nutrients to the low-latitude thermocline is largely controlled by intermediate-depth waters formed at the surface in the high southern latitudes. Silicic acid is an essential macronutrient for diatoms, which are responsible for a significant portion of marine carbon export production. Changes in ocean circulation, such as those observed during the last deglaciation, would influence the nutrient composition of the thermocline and, therefore, the relative abundance of diatoms in the low latitudes. Here we present the first record of the silicic acid content of the Atlantic over the last glacial cycle. Our results show that at intermediate depths of the South Atlantic, the silicic acid concentration was the same at the Last Glacial Maximum (LGM) as it is today, overprinted by high silicic acid pulses that coincided with abrupt changes in ocean and atmospheric circulation during Heinrich Stadials and the Younger Dryas. We suggest these pulses were caused by changes in intermediate water formation resulting from shifts in the subpolar hydrological cycle, with fundamental implications for the nutrient supply to the Atlantic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examined the factors controlling the variability in water-column respiration rates in Amazonian rivers. Our objectives were to determine the relationship between respiration rates and the in situ concentrations of the size classes of organic carbon (OC), and the biological source (C-3 and C-4 plants and phytoplankton) of organic matter (OM) supporting respiration. Respiration was measured along with OC size fractions and dissolved oxygen isotopes (delta O-18-O-2) in rivers of the central and southwestern Amazon Basin. Rates ranged from 0.034 mu mol O-2 L-1 h(-1) to 1.78 mu mol O-2 L-1 h(-1), and were four-fold higher in rivers with evidence of photosynthetic production (demonstrated by delta O-18-O-2<24.2 parts per thousand) as compared to rivers lacking such evidence (delta O-18-O-2>24.2 parts per thousand; 1.35 +/- 0.22 vs. 0.30 +/- 0.29 mu mol L-1 h(-1)). Rates were likely elevated in the former rivers, which were all sampled during low water, due to the stimulation of heterotrophic respiration via the supply of a labile, algal-derived substrate and/or the occurrence of autotrophic respiration. The organic composition of fine particulate OM (FPOM) of these rivers is consistent with a phytoplankton origin. Multiple linear regression analysis indicates that [FPOC], C:N-FPOC ratios, and [O-2] account for a high amount of the variability in respiration rates (r(2) = 0.80). Accordingly, FPOC derived from algal sources is associated with elevated respiration rates. The delta C-13 of respiration-derived CO2 indicates that the role of phytoplankton, C-3 plants, and C-4 grasses in supporting respiration is temporally and spatially variable. Future scaling work is needed to evaluate the significance of phytoplankton production to basin-wide carbon cycling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work was to determine the impact of three levels of [CO2] and two levels of soil-nutrient availability on the growth and physiological responses of two tropical tree species differing in their ecological group: Croton urucurana Baillon, a pioneer (P), and also Cariniana legalis (Martius) Kuntze, a late succession (LS). We aimed to test the hypothesis that P species have stronger response to elevated [CO2] than LS species as a result of differences in photosynthetic capacity and growth kinetics between both functional groups. Seedlings of both species were grown in open-top-chambers under high (HN) or low (LN) soil-nutrient supply and exposed to ambient (380 mu mol mol(-1)) or elevated (570 and 760 mu mol mol(-1)) [CO2]. Measurements of gas exchange, chlorophyll a fluorescence, seedling biomass and allocation were made after 70 days of treatment. Results suggest that elevated [CO2] significantly enhances the photosynthetic rates (A) and biomass production in the seedlings of both species, but that soil-nutrient supply has the potential to modify the response of young tropical trees to elevated [CO2]. In relation to plants grown in ambient [CO2], the P species grown under 760 mu mol mol(-1) [CO2] showed increases of 28% and 91% in A when grown in LN and HN, respectively. In P species grown under 570 mu mol mol(-1) [CO2], A increased by 16% under HN, but there was no effect in LN. In LS species, the enhancement of A by effect of 760 mu mol mol(-1) [CO2] was 30% and 70% in LN and HN, respectively. The exposure to 570 mu mol mol(-1) [CO2] stimulated A by 31% in HN, but was no effect in LN. Reductions in stomatal conductance (g(s)) and transpiration (E), as a result of elevated [CO2] were observed. Increasing the nutrient supply from low to high increased both the maximum rate of carboxylation (V-cmax) and maximum potential rate of electron transport (J(max)). As the level of [CO2] increased, both the V-cmax and the J(max) were found to decrease, whereas the J(max)/V-cmax ratio increased. In the LS species, the maximum efficiency of PSII (F-v/F-m) was higher in the 760 mu mol mol(-1) [CO2] treatment relative to other [CO2] treatments. The results suggest that when grown under HN and the highest [CO2], the performance of the P species C. urucurana, in terms of photosynthesis and biomass enhancement, is better than the LS species C. legalis. However, a larger biomass is allocated to roots when C. legalis seedlings were exposed to elevated [CO2]. This response would be an important strategy for plant survival and productivity of the LS species under drought stresses conditions on tropical environments in a global-change scenario. (C) 2011 Elsevier B.V. All rights reserved.