3 resultados para ASSEMBLY FACTOR ASF1
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Anti-silencing factor 1 (ASF1) is a histone chaperone that contributes to the histone deposition during nucleosome assembly in newly replicated DNA. It is involved in chromatin disassembly, transcription activation and in the cellular response to DNA damage. In Leishmania major the ASF1 gene (LmASF1) is located in chromosome 20 and codes for a protein showing 67% of identity with the Trypanosoma brucei TbASF1a. Compared to orthologous proteins, LmASF1 conserves the main residues relevant for its various biological functions. To study ASF1 in Leishmania we generated a mutant overexpressing LmASF1 in L. major. We observed that the excess of LmASF1 impaired promastigotes growth rates and had no impact on cell cycle progress. Differently from yeast, ASF1 overproduction in Leishmania did not affect expression levels of genes located on telomeres, but led to an upregulation of proteins involved in chromatin remodelling and physiological stress, such as heat shock proteins, oxidoreductase activity and proteolysis. In addition, we observed that LmASF1 mutant is more susceptible to the DNA damaging agent, methyl methane sulphonate, than the control line. Therefore, our study suggests that ASF1 from Leishmania pertains to the chromatin remodelling machinery of the parasite and acts on its response to DNA damage.
Resumo:
The aim of this study was to evaluate factors associated with reported work-related musculoskeletal symptoms among aircraft assembly workers. Population consisted of 552 (491 men/61 women) workers who performed tasks related to the work of aircraft assembly. Participants completed a comprehensive questionnaire, including socio-demographic information, habits/lifestyles, working conditions, and work organization. Workers also answered the Nordic Musculoskeletal Questionnaire to obtain data on musculoskeletal symptoms. Multivariate logistic regression was performed to analyze factors associated with musculoskeletal reported symptoms. Results showed that body regions with the highest prevalence of reported musculoskeletal symptoms were similar when referred the past twelve months and the past seven days. Significant factors associated with musculoskeletal symptoms included variables related to conflicts at work, sleep problems, mental fatigue, and lack of time for personal care and recovery. Working time in the industry was associated only with reports for the last seven days and regular physical activity off-work seems to be a positive factor in preventing musculoskeletal symptoms for the past twelve months. The results highlight the multi-factorial nature of the problem. Actions to prevent musculoskeletal diseases at the aircraft assembly work should consider multiple interventions that would promote better recovery between work shifts.
Resumo:
Splicing of primary transcripts is an essential process for the control of gene expression. Specific conserved sequences in premature transcripts are important to recruit the spliceosome machinery. The Saccharomyces cerevisiae catalytic spliceosome is composed of about 60 proteins and 5 snRNAs (U1, U2, U4/U6 and U5). Among these proteins, there are core components and regulatory factors, which might stabilize or facilitate splicing of specific substrates. Assembly of a catalytic complex depends on the dynamics of interactions between these proteins and RNAs. Cwc24p is an essential S. cerevisiae protein, originally identified as a component of the NTC complex, and later shown to affect splicing in vivo. In this work, we show that Cwc24p also affects splicing in vitro. We show that Cwc24p is important for the U2 snRNP binding to primary transcripts, co-migrates with spliceosomes, and that it interacts with Brr2p. Additionally, we show that Cwc24p is important for the stable binding of Prp19p to the spliceosome. We propose a model in which Cwc24p is required for stabilizing the U2 association with primary transcripts, and therefore, especially important for splicing of RNAs containing non- consensus branchpoint sequences.