4 resultados para ARTEMIA NAUPLII
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This report shows an unexpected toxicity decrease during atrazine photoelectrodegradation in the presence of NaCl. Atrazine is a pesticide classified as endocrine disruptor occurring in industrial effluents and agricultural wastewaters. We therefore studied the effects of the degradation method, electrochemical and electrochemical photo-assisted, and of the supporting electrolyte, NaCl and Na2SO4, on the residual toxicity of treated atrazine solutions. We also studied the toxicity of treated atrazine solutions using Results show that at initial concentration of 20 mg L-1, atrazine was completely removed in up to 30 min using 10 mA cm(-2) electrolysis in NaCl medium, regardless of the electrochemical method used. The total organic carbon removal by the photo-assisted method was 82% with NaCl and 95% with Na2SO4. The solution toxicity increased during sole electrochemical treatment in NaCl, as expected. However, the toxicity unexpectedly decreased using the photo-assisted method. This finding is a major discovery because electrochemical treatment with NaCl usually leads to the formation of toxic chlorine-containing organic degradation by-products.
Resumo:
Phyllopodopsyllus iuanamai sp. nov. and Phyllopodopsyllus pseudokunzi sp. nov. are described from specimens collected in the Channel of São Sebastião (State of São Paulo, Brazil). The nauplii of P. iuanamai, P. pseudokunzi, P. aegypticus Nicholls, 1944 are described, additional information is given on nauplii and morphology of the adult P. setouchiensis Kitazima, 1981, and on the nauplius of Laophontella horrida (Por, 1964). These represent first records of P. aegypticus and L. horrida in Brazilian waters.
Resumo:
We investigated the influence of nutrient-rich oceanic waters in comparison to the estuarine outflow from Santos Bay (SE Brazil) on copepod abundance and production on the adjacent inner shelf. Zooplankton samples were collected with a Multinet in spring 2005 and in summer 2006. Copepod biomass was derived from length-weight regressions, and growth rates were estimated from empirical models. Altogether, 58 copepod taxa were identified. The highest abundances were due to small-sized organisms including nauplii, oncaeids and copepodids of paracalanids and clausocalanids. Biomass and secondary production mirrored copepod abundance, with Temora copepodids accompanying the above-mentioned taxa as major contributors. The contribution of naupliar biomass and production was low (2.2 and 3.8% of the total, respectively). The influence of the Santos Bay outflow was observed only in spring, when Coastal Water (CW) dominated at the study site; whereas in summer the inner shelf was occupied by CW in the surface layer and the oceanic South Atlantic Central Water (SACW) in the bottom layer. The SACW intrusion had more of an influence for the increase in copepod production than the Santos Bay plume. The distribution and dynamics of the oceanic water masses seemed to be the most important influence on copepod diversity and production at this subtropical site.
Resumo:
Heraclides brasiliensis (Lepidoptera: Papilionidae) larvae feed preferably on Piperaceae, foraging successfully on leaf tissues even though species of this contain high levels of secondary metabolites such as amides and lignans, associated with diverse biological activities including insecticidal properties. Studies examining the metabolism of chemical constituents in Piperaceae by insects are rare. In this study, we characterized the metabolites of 4-nerolidylcatechol (4-NC), the major constituent of Piper umbellata (Piperaceae), and E-2,3-dihydro-3-(3,4-dihydroxyphenyl)farnesoic acid, compounds from fecal material of H. brasiliensis larvae fed a diet containing only P. umbellata leaves. The biotransformed product was also detected in larval and pupal tissues. Moreover, we observed deactivation of the toxicity of P. umbellata leaves against brine shrimp after their metabolism in H. brasiliensis larvae from a LC50 of 523.3 to 3,460.7 mu g/mL. This deactivation is closely associated with the biotransformation of 4-NC to E-2,3-dihydro-3-(3,4-dihydroxyphenyl)farnesoic acid, which showed LC50 of 8.0 and >1,000 mu g/mL, respectively.