6 resultados para ARGON ABUNDANCES

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a systematic study on the influence of the synthesis routes on the structural and magnetic properties of polycrystalline PrxY1-xBa2Cu3O7-delta. We have prepared high-quality samples of this material by following a sol-gel method based on heat treatment in both inert argon and oxygen atmospheres in order to compare their effect on the formation of the superconducting phase using X-ray powder diffraction. Magnetic measurements (DC and AC susceptibility) clearly demonstrate that, for the same concentration of Pr, the superconducting transition temperature markedly increases in all samples prepared in argon atmosphere, including pure Pr-123. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The aim of this study was to investigate the effect of Nd:YAG and argon laser irradiations on enamel demineralization after two different models to induce artificial caries. Background data: It is believed that the use of the high-intensity laser on the dental structure can lead to a more acid-resistant surface. Materials and methods: Twenty-one extracted human third molars were sectioned into tooth quarters. The quarters were distributed in three groups: Group I (control), untreated; Group II, Nd:YAG laser (60 mJ, 15 pps, 47.77 J/cm(2), 30 sec); and Group III, argon laser (250mW, 12 J/cm(2), 48 sec). Tooth quarters from each group were subjected to two different demineralization models: cycle 1, a 14 day demineralization (pH 4.5; 6 h) and remineralization (pH 7.0; 18 h) solutions, 37 degrees C and cycle 2, 48 h in demineralization solution (pH 4.5). Samples were prepared in slices (60-100 mu m thick) to be evaluated under polarized light microscopy. Demineralization areas were measured (mm(2)) (n = 11). Data were analyzed by ANOVA and Tukey's test (p < 0.05). Results: Means followed by different letters are significantly different: 0.25 A (control, cycle 48 h); 0.18 AB (control, cycle 14 days); 0.17 AB (Nd:YAG, cycle 14 days); 0.14 BC (argon, cycle 48 h); 0.09 BC (Nd:YAG, cycle 48 h), and 0.06 C (argon, cycle 14 days). Conclusions: The argon laser was more effective for caries preventive treatment than Nd: YAG laser, showing a smaller demineralization area in enamel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. Recent studies have confirmed the long standing suspicion that M 22 shares a metallicity spread and complex chemical enrichment history similar to that observed in omega Cen. M 22 is among the most massive Galactic globular clusters and its color-magnitude diagram and chemical abundances reveal the existence of sub-populations. Aims. To further constrain the chemical diversity of M 22, necessary to interpret its nucleosynthetic history, we seek to measure relative abundance ratios of key elements (carbon, nitrogen, oxygen, and fluorine) best studied, or only available, using high-resolution spectra at infrared wavelengths. Methods. High-resolution (R = 50 000) and high S/N infrared spectra were acquired of nine red giant stars with Phoenix at the Gemini-South telescope. Chemical abundances were calculated through a standard 1D local thermodynamic equilibrium analysis using Kurucz model atmospheres. Results. We derive [Fe/H] = -1.87 to -1.44, confirming at infrared wavelengths that M 22 does present a [Fe/H] spread. We also find large C and N abundance spreads, which confirm previous results in the literature but based on a smaller sample. Our results show a spread in A(C+N+O) of similar to 0.7 dex. Similar to mono-metallic globular clusters, M 22 presents a strong [Na/Fe]-[O/Fe] anticorrelation as derived from Na and CO lines in the K band. For the first time we recover F abundances in M 22 and find that it exhibits a 0.6 dex variation. We find tentative evidence for a flatter A(F)-A(O) relation compared to higher metallicity globular clusters. Conclusions. Our study confirms and expands upon the chemical diversity seen in this complex stellar system. All elements studied to date show large abundance spreads which require contributions from both massive and low mass stars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a detailed study of carbon-enhanced metal-poor (CEMP) stars, based on high-resolution spectroscopic observations of a sample of 18 stars. The stellar spectra for this sample were obtained at the 4.2 m William Herschel Telescope in 2001 and 2002, using the Utrecht Echelle Spectrograph, at a resolving power R similar to 52 000 and S/N similar to 40, covering the wavelength range lambda lambda 3700-5700 angstrom. The atmospheric parameters determined for this sample indicate temperatures ranging from 4750 K to 7100 K, log g from 1.5 to 4.3, and metallicities -3.0 <= [Fe/H]<=-1.7. Elemental abundances for C, Na, Mg, Sc, Ti, Cr, Cu, Zn, Sr, Y, Zr, Ba, La, Ce, Nd, Sm, Eu, Gd, Dy are determined. Abundances for an additional 109 stars were taken from the literature and combined with the data of our sample. The literature sample reveals a lack of reliable abundance estimates for species that might be associated with the r-process elements for about 67% of CEMP stars, preventing a complete understanding of this class of stars, since [Ba/Eu] ratios are used to classify them. Although eight stars in our observed sample are also found in the literature sample, Eu abundances or limits are determined for four of these stars for the first time. From the observed correlations between C, Ba, and Eu, we argue that the CEMP-r/s class has the same astronomical origin as CEMP-s stars, highlighting the need for a more complete understanding of Eu production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen abundances of 67 dwarf stars in the metallicity range -1.6 < [Fe/H] < -0.4 are derived from a non-LTE analysis of the 777 nm O I triplet lines. These stars have precise atmospheric parameters measured by Nissen and Schuster, who find that they separate into three groups based on their kinematics and alpha-element (Mg, Si, Ca, Ti) abundances: thick disk, high-alpha halo, and low-alpha halo. We find the oxygen abundance trends of thick-disk and high-alpha halo stars very similar. The low-alpha stars show a larger star-to-star scatter in [O/Fe] at a given [Fe/H] and have systematically lower oxygen abundances compared to the other two groups. Thus, we find the behavior of oxygen abundances in these groups of stars similar to that of the a elements. We use previously published oxygen abundance data of disk and very metal-poor halo stars to present an overall view (-2.3 < [Fe/H] < +0.3) of oxygen abundance trends of stars in the solar neighborhood. Two field halo dwarf stars stand out in their O and Na abundances. Both G53-41 and G150-40 have very low oxygen and very high sodium abundances, which are key signatures of the abundance anomalies observed in globular cluster (GC) stars. Therefore, they are likely field halo stars born in GCs. If true, we estimate that at least 3% +/- 2% of the local field metal-poor star population was born in GCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to compare the microhardness of two resin composites (microhybrid and nanoparticles). Light activation was performed with argon ion laser 1.56J (L) and halogen light 2.6J (H) was used as control. Measurements were taken on the irradiated surfaces and those opposite them, at thicknesses of 1, 2 and 3 mm. To evaluate the quality of polymerization, the percentages of maximum hardness were calculated (PMH). For statistical analysis the ANOVA and Tukey tests were used (p <= 0.05). To microhybrid was shown that the hardness with laser was inferior to the hardness achieved with halogen light, for both the 1 mm and 2 mm. The nanoparticles polymerized with laser, presented lower hardness even on the irradiated surface, than the same surface light activated with halogen light. The microhybrid attained a minimum PMH of 80% up to the thickness of 2 mm with halogen light, and with laser, only up to 1 mm. The nanoparticles attained a minimum PMH of 80% up to 3 mm thickness with halogen light and with laser this minimum was not obtained at any thickness. Based on these results, it could be concluded that light activation with argon ion laser is contra-indicated for the studied nanoparticles. Published by Elsevier GmbH.