24 resultados para AQUEOUS-HUMOR
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Purpose: To determine the incidence of Piry virus contamination among surgical instruments used with disposable accessories for phacoemulsification during sequential surgeries. Methods: An experimental model was created with 4 pigs' eyes that were contaminated with Piry virus and 4 pigs' eyes that were not contaminated. Phacoemulsification was performed on the eyes, alternating between the contaminated and non-contaminated eyes. From one surgery to another, the operating fields, gloves, scalpel, tweezers, needles, syringes, tips and bag collector from the phacoemulsification machine were exchanged; only the hand piece and the irrigation and aspiration systems were maintained. Results: In the collector bag, three samples from the contaminated eyes (3/4) were positive, and two samples from the non-contaminated (2/4) eyes were also positive; at the tip, one sample from the contaminated eyes (1/4) and two samples of the noncontaminated eyes (2/4) yielded positive results. In the irrigation system, one sample from a non-contaminated eye (1/4) was positive, and in the aspiration system, two samples from contaminated eyes (2/4) and two samples from non-contaminated eyes (2/4) were positive. In the gloves, the samples were positive in two samples from the non-contaminated eyes (2/4) and in two samples from the contaminated eyes (2/4). In the scalpel samples, three contaminated eyes (3/4) and none of the non-contaminated eyes (0/4) were positive; finally, two samples from the anterior chambers of the non-contaminated eyes gathered after surgery were positive. Conclusions: In two non-contaminated eyes, the presence of genetic material was detected after phacoemulsification surgery, demonstrating that the transmission of the genetic material of the Piry virus occurred at some point during the surgery on these non-contaminated eyes when the hand piece and irrigation and aspiration systems were reused between surgeries.
Resumo:
The sea urchin, Echinometra lucunter, can be found along the Western Central Atlantic shores. In Brazil, it is responsible by circa 50% of the accidents caused by marine animals. The symptoms usually surpass trauma and may be pathologically varied and last differently, ranging from spontaneous healing in a few days, to painful consequences lasting for weeks. In this work, we have mimicked the sea urchin accident by administering an aqueous extract of the spine into mice and rats and evaluated the pathophysiological developments. Our data clearly indicate that the sea urchin accident is indeed a pro-inflammatory event, triggered by toxins present in the spine that can cause edema and alteration in the leukocyte-endothelial interaction. Moreover, the spine extract was shown to exhibit a hyperalgesic effect. The extract is rich in proteins, as observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but also contains other molecules that can be analyzed by reversed phase high-performance liquid chromatography. Altogether, these effects corroborate that an E. lucunter encounter is an accident and not an incident, as frequently reported by the victims.
Resumo:
Wet impregnation of pre-synthesized surfactant-stabilized aqueous rhodium (0) colloidal suspension on silica was employed in order to prepare supported Rh-0 nanoparticles of well-defined composition, morphology and size. A magnetic core-shell support of silica (Fe(3)O4@SiO2) was used to increase the handling properties of the obtained nanoheterogeneous catalyst. The nanocomposite catalyst Fe3O4@SiO2-Rh-0 NPs was highly active in the solventless hydrogenation of model olefins and aromatic substrates under mild conditions with turnover frequencies up to 143,000 h(-1). The catalyst was characterized by various transmission electron microscopy techniques showing well-dispersed rhodium nanoparticles (similar to 3 nm) mainly located at the periphery of the silica coating. The heterogeneous magnetite-supported nanocatalyst was investigated in the hydrogenation of cyclohexene and compared to the previous surfactant-stabilized aqueous Rh-0 colloidal suspension and various silica-supported Rh-0 nanoparticles. Finally, the composite catalyst could be reused in several runs after magnetic separation. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Identifying new uses for residues of industries that process large quantities of biomass, as in bioethanol production, is essential for a sustainable development with reduced impact on the environment, which is the reason why many efforts have been devoted to find noble uses for lignins. in this study, a lignin obtained from sugarcane bagasse in a bioethanol producing plant was carboxymethylated to yield the water-soluble carboxymethyl lignin (CML), which was then used as stabilizing agent in aqueous alumina (Al2O3) suspensions. CML had a degree of substitution 0.46 +/- 0.01, in relation to the C9 unit of lignin, and behaved as a polyelectrolyte in a large pH range owing to the dissociation of carboxylic groups. The action of CML as stabilizing agent of alumina aqueous suspensions was investigated using viscometry, zeta potential, and photon correlation spectroscopy (PCS) measurements, mainly as a function of pH and time. Overall, the results showed that CML had a good performance as a deflocculating agent, because it led to dispersions with low viscosity and small change in particle size as a function of time. The positive effect from the addition of CML was confirmed in the morphological features of the material obtained from the alumina suspensions after elimination of water, as indicated by scanning electron microscopy. The stabilization of alumina suspensions afforded by CML opens the way for similar applications of modified lignins, whose electrical and structural properties may be tuned for specific uses in various industries, including the ceramic industry. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Phase diagrams of poly(ethylene glycol)/polyacrylate/Na2SO4 systems have been investigated with respect to polymer size and pH. Plasmid DNA from Escherichia coil can depending on pH and polymer molecular weight be directed to a poly(ethylene glycol) or to a polyacrylate-rich phase in an aqueous two-phase system formed by these polymers. Bovine serum albumin (BSA) and E. coil homogenate proteins can be directed opposite to the plasmid partitioning in these systems. Two bioseparation processes have been developed where in the final step the pDNA is partitioned to a salt-rich phase giving a total process yield of 60-70%. In one of them the pDNA is partitioned between the polyacrylate and PEG-phases in order to remove proteins. In a more simplified process the plasmid is partitioned to a PEG-phase and back-extracted into a Na2SO4-rich phase. The novel polyacrylate/PEG system allows a strong change of the partitioning between the phases with relatively small changes in composition or pH. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A highly concentrated aqueous saline-containing solution of phenol, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2.4-DCP) was treated by the photo-Fenton process in a system composed of an annular reactor with a quartz immersion well and a medium-pressure mercury lamp (450 W). The study was conducted under special conditions to minimize the costs of acidification and neutralization, which are usual steps in this type of process. Photochemical reactions were carried out to investigate the influence of some process variables such as the initial concentration of Fe2+ ([Fe2+](0)) from 1.0 up to 2.5 mM, the rate in mmol of H2O2 fed into the system (F-H2O2,F-in) from 3.67 up to 7.33 mmol of H2O2/min during 120 min of reaction time, and the initial pH (pH(0)) from 3.0 up to 9.0 in the presence and absence of NaCl (60.0 g/L). Although the optimum pH for the photo-Fenton process is about 3.0, this particular system performed well in experimental conditions starting at alkaline and neutral pH. The results obtained here are promising for industrial applications, particularly in view of the high concentration of chloride, a known hydroxyl radical scavenger and the main oxidant present in photo-Fenton processes. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The removal of Pb2+ from aqueous solution by two Brazilian rocks that contain zeolites-amygdaloidal dacite (ZD) and sandstone (ZS)-was examined by batch experiments. ZD contains mordenite and ZS, stilbite. The effects of contact time, concentration of metal in solution and capacity of Na+ to recover the adsorbed metals were evaluated at room temperature (20A degrees C). The sorption equilibrium was reached in the 30 min of agitation time. Both materials removed 100% of Pb2+ from solutions at concentrations up to 50 mg/L, and at concentrations larger than 100 mg/L of Pb2+, the adsorption capacity of sandstone was more efficient than that of amygdaloidal dacite due to the larger quantities and the type of zeolites (stilbite) in the cement of this rock. All adsorbed Pb2+ was easily replaced by Na+ in both samples. The analysis of the adsorption models using nonlinear regression revealed that the Sips and the Freundlich isotherms provided the best fit for the ZS and ZD experimental data, respectively, indicating the heterogeneous adsorption surfaces of these zeolites.
Resumo:
The partitioning of Clavulanic Acid (CA) in a novel inexpensive and stable aqueous two-phase system (ATPS) composed by poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) has been studied. The aqueous two-phase systems are formed by mixing both polymers with a salt (NaCl or Na2SO4) and an aqueous solution of CA. The stability of CA on the presence of both polymers was investigated and it was observed that these polymers do not degrade the biomolecule. The effect of PEG-molecular size, polymer concentrations on the commercial CA partitioning has been studied, at 25 degrees C. The data showed that commercial CA was preferentially partitioned for the PEG-rich phase with a partition coefficient (K-CA) between 1 and 12 in the PEG/NaPA aqueous two phase systems supplemented with NaCl and Na2SO4. The partition to the PEG phase was increased in the systems with high polymer concentrations. Furthermore, Na2SO4 caused higher CA preference for the PEG-phase than NaCl. The systems having a composition with 10 wt.% of PEG4000, 20 wt.% of NaPA8000 and 6 wt.% of Na2SO4 were selected as the optimal ones in terms of recovery of CA from fermented broth of Streptomyces clavuligerus. The partitioning results (K-CA = 9.15 +/- 1.06) are competitive with commercial extraction methods of CA (K-CA = 11.91 +/- 2.08) which emphasizes that the system PEG/NaPA/Na2SO4 can be used as a new process to CA purification/concentration from fermented broth. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Centrifugal countercurrent distribution (CCCD) in an aqueous two-phase system (TPS) is a resolute technique revealing sperm heterogeneity and for the estimation of the fertilizing potential of a given semen sample. However, separated sperm subpopulations have never been tested for their fertilizing ability yet. Here, we have compared sperm quality parameters and the fertilizing ability of sperm subpopulations separated by the CCCD process from ram semen samples maintained at 20 degrees C or cooled down to 5 degrees C. Total and progressive sperm motility was evaluated by computer-assisted analysis using a CASA system and membrane integrity was evaluated by flow cytometry by staining with CFDA/Pl. The capacitation state, staining with chlortetracycline, and apoptosis-related markers, such as phosphatidylserine (PS) translocation detected with Annexin V. and DNA damage detected by the TUNEL assay, were determined by fluorescence microscopy. Additionally, the fertilizing ability of the fractionated subpopulations was comparative assessed by zona binding assay (ZBA). CCCD analysis revealed that the number of spermatozoa displaying membrane and DNA alterations was higher in samples chilled at 5 degrees C than at 20 degrees C. which can be reflected in the displacement to the left of the CCCD profiles. The spermatozoa located in the central and right chambers (more hydrophobic) presented higher values (P<0.01) of membrane integrity, lower PS translocation (P<0.05) and DNA damage (P<0.001) than those in the left part of the profile, where apoptotic markers were significantly increased and the proportion of viable non-capacitated sperm was reduced. We have developed a new protocol to recover spermatozoa from the CCCD fractions and we proved that these differences were related with the fertilizing ability determined by ZBA, because we found that the number of spermatozoa attached per oocyte was significantly higher for spermatozoa recovered from the central and right chambers, in both types of samples. This is the first time, to our knowledge that sperm recovered from a two-phase partition procedure are used for fertilization assays. These results open up new possibilities for using specific subpopulations of sperm for artificial insemination or in vitro fertilization, not only regarding better sperm quality but also certain characteristics such as subpopulations enriched in spermatozoa bearing X or Y chromosome that we have already isolated or any other feature. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The stingless bees are an important component of the insect biomass in many tropical areas, due to their collection of nectar and pollen. Trigona spinipes is a widely distributed species in South America, and described as a pollinator of many crops that can be used in a commercial pollinating system. The effects of plant extracts on insects are studied because of the demand for organic food and their selectivity to natural enemies. Plant insecticides are reported as a potential agent for the control of insect pests, however little is known about their impact on beneficial insects. This study investigated the survival of Trigona spinipes (Hymenoptera: Apidae, Meliponini) Fabricius, after exposure to the leaf extracts of Azadiracha indica (Meliaceae), Lippia sidoides (Verbenaceae), Sapindus saponaria (Sapindaceae), Anonna squamosa (Anonnaceae) Cymbopogon winterianum (Poaceae), Corimbia citriodora (Myrtaceae), Jatropha curcas (Euphorbiaceae) and Ricinus communis (Euphorbiaceae) and of seeds of Azadiracha indica, Ricinus communis Nordestina and AL Guarany varieties and Jatropha curcas. The extracts that had the greatest influence on the survival of the bees were A. indica at 3% and 7% of concentration, A. squamosa at a concentration of 10% with 68.89% survival and green leaf of R. communis at a concentration of 7%. The results show that although the extracts were effective in controlling pests, they may also affect the pollinator Trigona spinipes.
Resumo:
Synthetic ZrO2 center dot nH(2)O was used for phosphate removal from aqueous solution. The optimum adsorbent dose obtained for phosphate adsorption on to hydrous zirconium oxide was 0.1 g. The kinetic process was described very well by a pseudo-second-order rate model. The phosphate adsorption tended to increase with the decrease in pH. The adsorption capacity increased from 61 to 66 mg g(-1) when the temperature was increased from 298 to 338 K. A phosphate desorption of approximately 74% was obtained using water at pH 12.
Resumo:
Faculty of Medicine University of Sao Paulo
Resumo:
The interference of some specific aqueous two-phase system (ATPS) phase-forming components in bovine serum albumin (BSA) determination by the Bradford method was investigated. For this purpose, calibration curves were obtained for BSA in the presence of different concentrations of salts and polymers. A total of 19 salts [Na2SO4, (NH4)(2)SO4, MgSO4, LiSO4, Na2HPO4, sodium phosphate buffer (pH 7.0), NaH2PO4, K2HPO4, potassium phosphate buffer (pH 7.0), KH2PO4, C6H8O7, Na3C6HSO7, KCHO2, NaCHO2, NaCO3, NaHCO3, C2H4O2, sodium acetate buffer (pH 4.5), and NaC2H3O2] and 7 polymers [PEG 4000, PEG 8000, PEG 20000, UCON 3900, Ficoll 70000, PES 100000, and PVP 40000] were tested, and each calibration curve was compared with the one obtained for BSA in water. Some concentrations of salts and polymers had considerable effect in the BSA calibration curve. Carbonate salts were responsible for the highest salt interference, whereas citric and acetic acids did not produce interference even in the maximum concentration level tested (5 wt%). Among the polymers, UCON gave the highest interference, whereas Ficoll did not produce interference when used in concentrations up to 10 wt%. It was concluded that a convenient dilution of the samples prior to the protein quantification is needed to ensure no significant interference from ATPS phase-forming constituents. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Purification of collagenase produced by Penicillium aurantiogriseum URM4622 was carried using a PEG/phosphate aqueous two-phase system (ATPS). A 2(3)-full experimental design was used to investigate the influence of PEG molar mass, PEG concentration and phosphate concentration on the selected responses, namely partition coefficient, activity yield and purification factor. The ATPS was composed of PEG (molar mass of 550, 1500 and 4000 g/mol) at concentrations of 15.0, 17.5 and 20.0% (w/w) and phosphate at concentrations of 12.5, 15.0 and 17.5% (w/w). The best results of one-step extraction of collagenase from the fermentation broth (partition coefficient of 1.01, activity yield of 242% and purification factor of 23.5) were obtained at pH 6.0 using 20.0% (w/w) PEG 550 and 17.5% (w/w) phosphate. The results of this preliminary study demonstrate that the selected ATPS is satisfactorily selective for the extraction of such a collagenase. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Information on the solvation in mixtures of water, W, and the ionic liquids, ILs, 1-allyl-3-R-imidazolium chlorides; R = methyl, 1-butyl, and 1-hexyl, has been obtained from the responses of the following solvatochromic probes: 2,6-dibromo-4-[(E)-2-(1-R-pyridinium-4-yl)ethenyl] phenolate, R = methyl, MePMBr2; 1-octyl, OcPMBr(2), and the corresponding quinolinium derivative, MeQMBr(2). A model developed for solvation in binary mixtures of W and molecular solvents has been extended to the present mixtures. Our objective is to assess the relevance to solvation of hydrogen-bonding and the hydrophobic character of the IL and the solvatochromic probe. Plots of the medium empirical polarity, E-T(probe) versus its composition revealed non-ideal behavior, attributed to preferential solvation by the IL and, more efficiently, by the IL-W hydrogen-bonded complex. The deviation from linearity increases as a function of increasing number of carbon atoms in the alkyl group of the IL, and is larger than that observed for solvation by W plus molecular solvents (1-propanol and 2-(1-butoxy)ethanol) that are more hydrophobic than the ILs investigated. This enhanced deviation is attributed to the more organized structure of the ILs proper, which persists in their aqueous solutions. MeQMBr(2) is more susceptible to solvent lipophilicity than OcPMBr(2), although the former probe is less lipophilic. This enhanced susceptibility agrees with the important effect of annelation on the contributions of the quinonoid and zwitterionic limiting structures to the ground and excited states of the probe, hence on its response to both medium composition and lipophilicity of the IL.