4 resultados para APINAE
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Nestmate recognition is fundamental for the maintenance of social organization in insect nests. It is becoming well recognized that cuticle hydrocarbons mediate the recognition process, although the origin of recognition cues in stingless bees remains poorly explored. The present study investigates the effects of endogenously-produced and environmentally-acquired components in cuticular hydrocarbons in stingless bees. The tests are conducted using colonies of Plebeia droryana Friese and Plebeia remota Holmberg. Recognition tests are performed with four different groups: conspecific nestmates, conspecific non-nestmates, heterospecifics and conspecific, genetically-related individuals that emerge in a heterospecific nest. This last group is produced by introducing brood cells of P. droryana into a P. remota colony, and the resulting adult bees are tested for acceptance 10 days after emergence. For all groups, 15 individuals are sampled for chemical analysis. The results show the acceptance of all conspecific nestmates, and the rejection of almost every conspecific non-nestmate and every heterospecific bee. Genetically-related individuals emerging from heterospecific nests present intermediate rejection (66.7% rejection). Chemical analysis shows that P. droryana individuals emerging in a P. remota nest have small amounts of alkene and diene isomers found in P. remota cuticle that are not found in workers from the natal nest. The data clearly show that the majority of the compounds present in P. droryana cuticle are endogenously produced, although a few unsaturated compounds are acquired from the environment, increasing the chemical differences and, consequently, the rejection percentages.
Resumo:
The aim of the present study was to characterize the variation of the chemical profiles among workers in different colonies of the stingless bee Melipona marginata. We used gas chromatography and mass spectrometry (CG-MS) and multivariate analysis of the bees' chemical from three colonies of two localities in southeast Brazil. The results showed that cuticular hydrocarbon profiles clearly separated distinct colonies. We show here the importance of using the chemical analyses for characterization of colony membership, in addition of the traditional techniques of diversity analyses.
Resumo:
Considering the ecological importance of stingless bees as caretakers and pollinators of a variety of native plants makes it necessary to improve techniques which increase of colonies' number in order to preserve these species and the biodiversity associated with them. Thus, our aim was to develop a methodology of in vitro production of stingless bee queens by offering a large quantity of food to the larvae. Our methodology consisted of determining the amount of larval food needed for the development of the queens, collecting and storing the larval food, and feeding the food to the larvae in acrylic plates. We found that the total average amount of larval food in a worker bee cell of E varia is approximately 26.70 +/- 3.55 mu L. We observed that after the consumption of extra amounts of food (25, 30, 35 and 40 mu L) the larvae differentiate into queens (n = 98). Therefore, the average total volume of food needed for the differentiation of a young larva of F. varia queen is approximately 61.70 +/- 5.00 mu L. In other words; the larvae destined to become queens eat 2.31 times more food than the ones destined to become workers. We used the species Frieseomelitta varia as a model, however the methodology can be reproduced for all species of stingless bees whose mechanism of caste differentiation depends on the amount of food ingested by the larvae. Our results demonstrate the effectiveness of the in vitro technique developed herein, pointing to the possibility of its use as a tool to assist the production of queens on a large scale. This would allow for the artificial splitting of colonies and contribute to conservation efforts in native bees.
Resumo:
The spatial and temporal distribution of organisms is a fundamental aspect of biological communities. The present study focused on three remnants of arboreal Caatinga in northeastern Brazil between May, 2009 and April, 2010. A total of 627 euglossine males were captured in traps baited with artificial aromatic compounds. The specimens belonged to 14 species and four genera: Euglossa Latreille, Eulaema Lepeletier, Eufriesea Cockerell, and Exaerete Hoffmannsegg. Eulaema nigrita Lepeletier (41.6), Euglossa carolina Nem,sio (15.3%), Eulaema marcii Nem,sio (13.6%), and Euglossa melanotricha Moure (12.8%) were the most common species sampled. The distribution of collected specimens per fragment was as follows: BraA(0)na (280 ha)-259 individuals belonging to 14 species; Cambui (179 ha)-161 individuals from eight species; and Pindoba (100 ha)-207 individuals represented by seven species. BraA(0)na had the highest diversity (H'aEuro parts per thousand= 1.91) and estimated species richness. The largest fragment was the main source of the observed variation in species richness and abundance, indicating a non-random pattern of spatial distribution. The analysis of environmental factors indicated that seasonal variation in these factors was the principal determinant of species occurrence and abundance.