5 resultados para ANTIMICROBIAL EFFICACY
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Purpose: To assess the influence of ozone gas and ozonated water application to prepared cavity and bonded interfaces on the resin/dentin bond strength of two-step etch-and-rinse adhesive systems (Adper Single Bond 2 [SB2] and XP-Bond [XP]). Materials and Methods: Sixty extracted human third molars were sectioned perpendicularly to their long axes to expose flat occlusal dentin surfaces. In experiment 1, dentin was treated with ozone before the bonding procedure, while in experiment 2, ozone was applied to resin/dentin bonded interfaces. In experiment 1, dentin surfaces were treated either with ozone gas (2100 ppm), ozonated water (3.5 ppm), or distilled water for 120 s, and then bonded with SB2 or XP according to manufacturers' instructions. Hybrid composite buildups were incrementally constructed and the teeth were sectioned into resin-dentin sticks (0.8 mm(2)). In experiment 2, dentin surfaces were first bonded with SB2 or XP, composite buildups were constructed, and bonded sticks obtained. The sticks were treated with ozone as previously described. Bonded sticks were tested under tensile stress at 1 mm/min. Silver nitrate impregnation along the resin/dentin interfaces was also evaluated under SEM. Results: Two-way ANOVA (adhesive and ozone treatment) detected no significant effect for the cross-product interaction and the main factors in the two experiments (p > 0.05), which was confirmed by the photomicrographs. Conclusion: Ozone gas and ozonated water used before the bonding procedure or on resin/dentin bonded interfaces have no deleterious effects on the bond strengths and interfaces.
Resumo:
Objective: To evaluate, in vitro, the antimicrobial activity and biofilm formation of three chlorhexidine varnishes in four Enterococcus faecalis strains: E. faecalis ATCC 29212, E. faecalis EF-D1 (from failed endodontic treatment), E. faecalis 072 (cheese) and E. faecalis U-1765 (nosocomial infection), and one Enterococcus durans strain (failed endodontic treatment). Study Design: The direct contact test was used to study the antimicrobial activity. Bacterial suspensions were exposed for one hour to EC40, Cervitec (CE) and Cervitec Plus (CEP) varnishes. "Eradication" was defined as 100% bacterial kill. The formation of enterococci biofilms was tested on the surface of the varnishes after 24 hours of incubation and expressed as percentage of biofilm reduction. Results: EC40 eradicated all strains except E. faecalis ATCC 29212, where 98.78% kill was achieved. CE and CEP showed antimicrobial activity against all the strains, but most clearly against E. durans and E. faecalis 072. EC40 completely inhibited the formation of biofilm of E. faecalis ATCC 29212, E. faecalis 072 and E. durans. CE and CEP led to over 92% of biofilm reduction, except in the case of E. faecalis U-1765 on CEP (76.42%). Conclusion: The three varnishes studied were seen to be effective in killing the tested strains of enterococci and in inhibiting the formation of biofilm, the best results being observed with EC40.
Resumo:
Photodynamic antimicrobial chemotherapy (PACT) is a promising alternative to conventional chemotherapy that can be used to treat localized mycosis. The development of PACT depends on identifying effective and selective PS for the different pathogenic species. The in vitro susceptibilities of Trichophyton mentagrophytes and Trichophyton rubrum microconidia to PACT with methylene blue (MB), toluidine blue o (TBO), new methylene blue N (NMBN), and the novel pentacyclic phenothiazinium photosensitizer S137 were investigated. The efficacy of each PS was determined based on its minimal inhibitory concentration (MIC). Additionally, we evaluated the effect of PACT with NMBN and S137 on the survival of the microconidia of both species. 5137 showed the lowest MIC. MIC for S137 was 2.5 mu M both for T. mentagrophytes and T. rubrum, when a light dose of 5J cm(-2) was used. PACT with NMBN (10 mu M and 20J cm(-2)) resulted in a reduction of 4 logs in the survival of the T. rubrum and no survivor of T. mentagrophytes was observed. PACT with S137 at 1 mu M and 20J cm(-2) resulted in a reduction of approximately 3 logs in the survival of both species. When a S137 concentration of 10 mu M was used, no survivor was observed for both species at all light doses (5, 10 and 20J cm(-2)). (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: Antimicrobial peptides are present in animals, plants and microorganisms and play a fundamental role in the innate immune response. Gomesin is a cationic antimicrobial peptide purified from haemocytes of the spider Acanthoscurria gomesiana. It has a broad-spectrum of activity against bacteria, fungi, protozoa and tumour cells. Candida albicans is a commensal yeast that is part of the human microbiota. However, in immunocompromised patients, this fungus may cause skin, mucosal or systemic infections. The typical treatment for this mycosis comprises three major categories of antifungal drugs: polyenes, azoles and echinocandins; however cases of resistance to these drugs are frequently reported. With the emergence of microorganisms that are resistant to conventional antibiotics, the development of alternative treatments for candidiasis is important. In this study, we evaluate the efficacy of gomesin treatment on disseminated and vaginal candidiasis as well as its toxicity and biodistribution. Results: Treatment with gomesin effectively reduced Candida albicans in the kidneys, spleen, liver and vagina of infected mice. The biodistribution of gomesin labelled with technetium-99 m showed that the peptide is captured in the kidneys, spleen and liver. Enhanced production of TNF-alpha, IFN-gamma and IL-6 was detected in infected mice treated with gomesin, suggesting an immunomodulatory activity. Moreover, immunosuppressed and C. albicans-infected mice showed an increase in survival after treatment with gomesin and fluconazole. Systemic administration of gomesin was also not toxic to the mice Conclusions: Gomesin proved to be effective against experimental Candida albicans infection. It can be used as an alternative therapy for candidiasis, either alone or in combination with fluconazole. Gomesin's mechanism is not fully understood, but we hypothesise that the peptide acts through the permeabilisation of the yeast membrane leading to death and/or releasing the yeast antigens that trigger the host immune response against infection. Therefore, data presented in this study reinforces the potential of gomesin as a therapeutic antifungal agent in both humans and animals.
Resumo:
This study investigated the efficacy of calcium hydroxide and chlorhexidine gel for the elimination of intratubular Candida albicans (C. albicans). Human single-rooted teeth contaminated with C. albicans were treated with calcium hydroxide, 2% chlorhexidine gel, calcium hydroxide plus 2% chlorhexidine gel, or saline (0.9% sodium chloride) as a positive control. The samples obtained at depths of 0–100 and 100–200 µm from the root canal system were analyzed for C. albicans load by counting the number of colony forming units and for the percentage of viable C. albicans using fluorescence microscopy. First, the antimicrobial activity of calcium hydroxide and the 2% chlorhexidine gel was evaluated by counting the number of colony forming units. After 14 days of intracanal medication, there was a significant decrease in the number of C. albicans colony forming units at a depth of 0–100 µm with chlorhexidine treatment either with or without calcium hydroxide compared with the calcium hydroxide only treatment. However, there were no differences in the number of colony forming units at the 100–200 µm depth for any of the medications investigated. C. albicans viability was also evaluated by vital staining techniques and fluorescence microscopy analysis. Antifungal activity against C. albicans significantly increased at both depths in the chlorhexidine groups with and without calcium hydroxide compared with the groups treated with calcium hydroxide only. Treatments with only chlorhexidine or chlorhexidine in combination with calcium hydroxide were effective for elimination of C. albicans