13 resultados para ANTI-AVERSIVE ACTION
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Several pharmacological targets have been proposed as modulators of panic-like reactions. However, interest should be given to other potential therapeutic neurochemical agents. Recent attention has been given to the potential anxiolytic properties of cannabidiol, because of its complex actions on the endocannabinoid system together with its effects on other neurotransmitter systems. The aim of this study was to investigate the effects of cannabidiol on innate fear-related behaviors evoked by a prey vs predator paradigm. Male Swiss mice were submitted to habituation in an arena containing a burrow and subsequently pre-treated with intraperitoneal administrations of vehicle or cannabidiol. A constrictor snake was placed inside the arena, and defensive and non-defensive behaviors were recorded. Cannabidiol caused a clear anti-aversive effect, decreasing explosive escape and defensive immobility behaviors outside and inside the burrow. These results show that cannabidiol modulates defensive behaviors evoked by the presence of threatening stimuli, even in a potentially safe environment following a fear response, suggesting a panicolytic effect. Neuropsychopharmacology (2012) 37, 412-421; doi:10.1038/npp.2011.188; published online 14 September 2011
Resumo:
Objectives The extract and essential oil of clove (Syzygium aromaticum) are widely used because of their medicinal properties. Eugenol is the most important component of clove, showing several biological properties. Herein we have analysed the immunomodulatory/anti-inflammatory effect of clove and eugenol on cytokine production (interleukin (IL)-1 beta, IL-6 and IL-10) in vitro. Methods Macrophages were incubated with clove or eugenol (5, 10, 25, 50 or 100 mg/well) for 24 h. Concentrations that inhibited the production of cytokines were used before or after incubation with lipopolysaccharide (LPS), to verify a preventive or therapeutic effect. Culture supernatants were harvested for measurement of cytokines by enzyme-linked immunosorbent assay. Key findings Clove (100 mg/well) inhibited IL-1 beta, IL-6 and IL-10 production and exerted an efficient action either before or after LPS challenge for all cytokines. Eugenol did not affect IL-1 beta production but inhibited IL-6 and IL-10 production. The action of eugenol (50 or 100 mg/well) on IL-6 production prevented efficiently effects of LPS either before or after its addition, whereas on IL-10 production it counteracted significantly LPS action when added after LPS incubation. Conclusions Clove exerted immunomodulatory/anti-inflammatory effects by inhibiting LPS action. A possible mechanism of action probably involved the suppression of the nuclear factor-kB pathway by eugenol, since it was the major compound found in clove
Resumo:
It is well known that excitatory amino acids induce unconditioned fear responses when locally injected into the dorsal periaqueductal gray matter (dPAG). However, there are only few studies about the involvement of excitatory amino acids mediation in dPAG in the expression of conditioned fear. The present series of experiments evaluates the participation of AMPA/Kainate and NMDA glutamatergic receptors of dPAG in the expression of conditioned fear, assessed by the fear-potentiated startle (FPS) and conditioned freezing responses. Wistar rats were subjected to fear conditioning to light. Twenty-four hours later, they received intra-dPAG injections of kainic acid or NMDA (AMPA/Kainate and NMDA agonists) and 1,2,3,4-Tetrahydro-6-nitro-2, 3-dioxo-benzo[f]quinoxaline-7-sulfonamide disodium salt hydrate (NBQX) or D(-)-2-Amino-7-phosphonoheptanoic acid (APT) (AMPA/Kainate and NMDA antagonists) and were submitted to the FPS test. Conditioned freezing response was simultaneously measured. Effects of drug treatment on motor activity were evaluated in the open-field test. Intra-dPAG injections of glutamatergic agonists enhanced conditioned freezing and promoted pro-aversive effects in the FPS. Lower doses of the agonists had no effect or enhanced FPS whereas higher doses disrupted FPS, indicating a non-monotonic relationship between fear and FPS. The antagonist NBQX had no significant effects while AP7 decreased conditioned freezing but did not affect FPS. Both antagonists reduced the effects of the agonists. The obtained results cannot be attributed to motor deficits. The results suggest an important role of the AMPA/Kainate and NMDA mechanisms of the dPAG in the expression of conditioned freezing and FPS. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Smallanthus sonchifolius (Poepp.) H. Rob. , Asteraceae, known as yacon, is an herb that is traditionally used for the treatment of diabetes in folk medicine. However, recent studies have demonstrated that this plant has other interesting properties such as anti-microbial and anti-inflammatory actions. Thus, the purpose of this study was to evaluate the topical anti-inflammatory property of different extracts prepared from yacon leaves and analyze the role of different chemical classes in this activity. Three yacon leaf extracts were obtained: aqueous extract, where chlorogenic acid derivatives and sesquiterpene lactones were detected; leaf rinse extract, rich in sesquiterpene lactones; and polar extract, rich in chlorogenic acid derivatives. All the extracts exhibited anti-edematogenic activity in vivo (aqueous extract: 25.9% edema inhibition at 0.50 mg/ear; polar extract: 42.7% inhibition at 0.25 mg/ear; and leaf rinse extract: 44.1% inhibition at 0.25 mg/ear). The leaf rinse extract furnished the best results regarding neutrophil migration inhibition, and NO, TNF-? and PGE2 inhibition. These data indicate that both sesquiterpene lactones and chlorogenic acid derivatives contribute to the anti-inflammatory action, although sesquiterpene lactones seem to have more pronounced effects. In conclusion, yacon leaf extracts, particularly the sesquiterpene lactone-rich extract, has potential use as topical anti-inflammatory agent.
Resumo:
Background: Zinc-alpha 2-glycoprotein (ZAG) is a lipid mobilizing factor. Its anti-inflammatory action and expression pattern suggest that ZAG could act by protecting against the obesity-associated disorders. In hemodialysis (HD) patients, ZAG levels were described to be elevated but its effects on markers of inflammation and LDL oxidation are still unclear. We investigated the relationship between ZAG and markers of systemic inflammation and LDL atherogenic modification profile in HD patients. Methods: Forty-three patients regularly on HD were studied and compared to 20 healthy subjects. Plasma ZAG, adiponectin, electronegative LDL [LDL(-)], an atherosclerotic negatively charged LDL subtraction, and anti-LDL(-) autoantibodies levels were measured by ELISA. Markers of inflammation and atherogenic cell recruitment (TNF-alpha, interleukin-6, VCAM-1, ICAM-1, MCP-1 and PAI-1) were also determined. Results: Inflammatory markers and atherogenic cell recruitment were higher in HD patients when compared to healthy subjects. ZAG levels were also higher in HD patients (151.5 +/- 50.1 mg/l vs 54.6 +/- 23.0 mg/l; p<0.0001) and its levels were negatively correlated with TNF-alpha (r= -0.39; p = 0.001) and VCAM-1 (r= -0.52; p<0.0001) and, positively correlated with anti-LDL(-) autoantibodies (r = 038; p = 0.016). On multivariate analyses, plasma ZAG levels were independently associated with VCAM-1 (p = 0.01). Conclusion: ZAG is inversely associated with markers of pro-atherogenic factors linked to systemic inflammation and oxidative stress. Thus, this adipokine may constitute a novel marker of a favorable metabolic profile regarding cardiovascular risk factors in HD population. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A decrease in the number of cardiovascular events in patients with rheumatoid arthritis or psoriasis treated with methotrexate (MTX) has been observed in the literature. The aim of this study was to test whether MTX could promote anti-inflammatory effects and reduce the atherosclerotic lesions in rabbits with atherosclerosis induced by cholesterol feeding. Twenty male New Zealand rabbits were fed a 1% cholesterol diet for 60 days. Starting from day 30 of cholesterol feeding, 10 animals were treated with 4 weekly intravenous injections of MTX (4 mg/kg) and 10 with 4 weekly saline solution injections for 30 days. MTX reduced the size of the lesion areas of cholesterol-fed animals by 75% and intima-media ratio 2- fold. The drug inhibited macrophage migration into the intima by 50% and the presence of apoptotic cells by 84% but did not inhibit the intimal proliferation of smooth muscle cells. MTX treatment also diminished the positive staining area of metalloproteinase 9 in the intima, which is probably beneficial. In the tumor necrosis factor-alpha-treated human umbilical vein endothelial cell line, incubation with MTX led to downregulation of 5 pro-inflammatory genes, TNF-alpha, VAP-1, IL-1 beta, CXCL2, and TLR2, and upregulation of the antiinflammatory TGF-beta 1 gene, thus showing endothelium-protective properties. In conclusion, MTX showed direct in vivo anti-atherosclerotic action and may have potential in the treatment of this disorder.
Resumo:
Abstract Background Intestinal ischemia/reperfusion (IR) injury is a serious and triggering event in the development of remote organ dysfunction, from which the lung is the main target. This condition is characterized by intense neutrophil recruitment, increased microvascular permeability. Intestinal IR is also responsible for induction of adult respiratory distress syndrome, the most serious and life-threatening form of acute lung injury. The purpose of this study was to investigate the effect of annexin-A1 protein as an endogenous regulator of the organ remote injury induced by intestinal ischemia/reperfusion. Male C57bl/6 mice were subjected to intestinal ischemia, induced by 45 min occlusion of the superior mesenteric artery, followed by reperfusion. Results The intestinal ischemia/reperfusion evoked a high intensity lung inflammation as indicated by the number of neutrophils as compared to control group. Treatment with annexin-A1 peptidomimetic Ac2-26, reduced the number of neutrophils in the lung tissue and increased its number in the blood vessels, which suggests a regulatory effect of the peptide Ac2-26 in the neutrophil migration. Moreover, the peptide Ac2-26 treatment was associated with higher levels of plasma IL-10. Conclusion Our data suggest that the annexin-A1 peptidomimetic Ac2-26 treatment has a regulatory and protective effect in the intestinal ischemia/reperfusion by attenuation of the leukocyte migration to the lung and induction of the anti-inflammatory cytokine IL-10 release into the plasma. The anti-inflammatory action of annexin-A1 and its peptidomimetic described here may serve as a basis for future therapeutic approach in mitigating inflammatory processes due to intestinal ischemia/reperfusion.
Resumo:
BACKGROUND: Intestinal ischemia/reperfusion (IR) injury is a serious and triggering event in the development of remote organ dysfunction, from which the lung is the main target. This condition is characterized by intense neutrophil recruitment, increased microvascular permeability. Intestinal IR is also responsible for induction of adult respiratory distress syndrome, the most serious and life-threatening form of acute lung injury. The purpose of this study was to investigate the effect of annexin-A1 protein as an endogenous regulator of the organ remote injury induced by intestinal ischemia/reperfusion. Male C57bl/6 mice were subjected to intestinal ischemia, induced by 45 min occlusion of the superior mesenteric artery, followed by reperfusion. RESULTS: The intestinal ischemia/reperfusion evoked a high intensity lung inflammation as indicated by the number of neutrophils as compared to control group. Treatment with annexin-A1 peptidomimetic Ac2-26, reduced the number of neutrophils in the lung tissue and increased its number in the blood vessels, which suggests a regulatory effect of the peptide Ac2-26 in the neutrophil migration. Moreover, the peptide Ac2-26 treatment was associated with higher levels of plasma IL-10. CONCLUSION: Our data suggest that the annexin-A1 peptidomimetic Ac2-26 treatment has a regulatory and protective effect in the intestinal ischemia/reperfusion by attenuation of the leukocyte migration to the lung and induction of the anti-inflammatory cytokine IL-10 release into the plasma. The anti-inflammatory action of annexin-A1 and its peptidomimetic described here may serve as a basis for future therapeutic approach in mitigating inflammatory processes due to intestinal
Resumo:
Background The discovery and development of anti-malarial compounds of plant origin and semisynthetic derivatives thereof, such as quinine (QN) and chloroquine (CQ), has highlighted the importance of these compounds in the treatment of malaria. Ursolic acid analogues bearing an acetyl group at C-3 have demonstrated significant anti-malarial activity. With this in mind, two new series of betulinic acid (BA) and ursolic acid (UA) derivatives with ester groups at C-3 were synthesized in an attempt to improve anti-malarial activity, reduce cytotoxicity, and search for new targets. In vitro activity against CQ-sensitive Plasmodium falciparum 3D7 and an evaluation of cytotoxicity in a mammalian cell line (HEK293T) are reported. Furthermore, two possible mechanisms of action of anti-malarial compounds have been evaluated: effects on mitochondrial membrane potential (ΔΨm) and inhibition of β-haematin formation. Results Among the 18 derivatives synthesized, those having shorter side chains were most effective against CQ-sensitive P. falciparum 3D7, and were non-cytotoxic. These derivatives were three to five times more active than BA and UA. A DiOC6(3) ΔΨm assay showed that mitochondria are not involved in their mechanism of action. Inhibition of β-haematin formation by the active derivatives was weaker than with CQ. Compounds of the BA series were generally more active against P. falciparum 3D7 than those of the UA series. Conclusions Three new anti-malarial prototypes were obtained from natural sources through an easy and relatively inexpensive synthesis. They represent an alternative for new lead compounds for anti-malarial chemotherapy.
Resumo:
Regulatory T (Treg) cells are fundamental in the control of immunity and excessive tissue pathology. In paracoccidioidomycosis, an endemic mycosis of Latin America, the immunoregulatory mechanisms that control the progressive and regressive forms of this infection are poorly known. Due to its modulatory activity on Treg cells, we investigated the effects of anti-CD25 treatment over the course of pulmonary infection in resistant (A/J) and susceptible (B10.A) mice infected with Paracoccidioides brasiliensis. We verified that the resistant A/J mice developed higher numbers and more potent Treg cells than susceptible B10.A mice. Compared to B10.A cells, the CD4(+)CD25(+)Foxp3(+) Treg cells of A/J mice expressed higher levels of CD25, CTLA4, GITR, Foxp3, LAP and intracellular IL-10 and TGF-beta. In both resistant and susceptible mice, anti-CD25 treatment decreased the CD4(+)CD25(+)Foxp3(+) Treg cell number, impaired indoleamine 2,3-dioxygenase expression and resulted in decreased fungal loads in the lungs, liver and spleen. In A/J mice, anti-CD25 treatment led to an early increase in T cell immunity, demonstrated by the augmented influx of activated CD4(+) and CD8(+) T cells, macrophages and dendritic cells to the lungs. At a later phase, the mild infection was associated with decreased inflammatory reactions and increased Th1/Th2/Th17 cytokine production. In B10.A mice, anti-CD25 treatment did not alter the inflammatory reactions but increased the fungicidal mechanisms and late secretion of Th1/Th2/Th17 cytokines. Importantly, in both mouse strains, the early depletion of CD25(+) cells resulted in less severe tissue pathology and abolished the enhanced mortality observed in susceptible mice. In conclusion, this study is the first to demonstrate that anti-CD25 treatment is beneficial to the progressive and regressive forms of paracoccidioidomycosis, potentially due to the anti-CD25-mediated reduction of Treg cells, as these cells have suppressive effects on the early T cell response in resistant mice and the clearance mechanisms of fungal cells in susceptible mice.
Resumo:
This study aimed to measure, using fMRI, the effect of diazepam on the haemodynamic response to emotional faces. Twelve healthy male volunteers (mean age = 24.83 +/- 3.16 years), were evaluated in a randomized, balanced-order, double-blind, placebo-controlled crossover design. Diazepam (10 mg) or placebo was given 1 h before the neuroimaging acquisition. In a blocked design covert face emotional task, subjects were presented with neutral (A) and aversive (B) (angry or fearful) faces. Participants were also submitted to an explicit emotional face recognition task, and subjective anxiety was evaluated throughout the procedures. Diazepam attenuated the activation of right amygdala and right orbitofrontal cortex and enhanced the activation of right anterior cingulate cortex (ACC) to fearful faces. In contrast, diazepam enhanced the activation of posterior left insula and attenuated the activation of bilateral ACC to angry faces. In the behavioural task, diazepam impaired the recognition of fear in female faces. Under the action of diazepam, volunteers were less anxious at the end of the experimental session. These results suggest that benzodiazepines can differentially modulate brain activation to aversive stimuli, depending on the stimulus features and indicate a role of amygdala and insula in the anxiolytic action of benzodiazepines.
Resumo:
Introduction: Toxoplasmosis is usually a benign infection, except in the event of ocular, central nervous system (CNS), or congenital disease and particularly when the patient is immunocompromised. Treatment consists of drugs that frequently cause adverse effects; thus, newer, more effective drugs are needed. In this study, the possible activity of artesunate, a drug successfully being used for the treatment of malaria, on Toxoplasma gondii growth in cell culture is evaluated and compared with the action of drugs that are already being used against this parasite. Methods: LLC-MK2 cells were cultivated in RPMI medium, kept in disposable plastic bottles, and incubated at 36 degrees C with 5% CO2. Tachyzoites of the RH strain were used. The following drugs were tested: artesunate, cotrimoxazole, pentamidine, pyrimethamine, quinine, and trimethoprim. The effects of these drugs on tachyzoites and LLC-MK2 cells were analyzed using nonlinear regression analysis with Prism 3.0 software. Results: Artesunate showed a mean tachyzoite inhibitory concentration (IC50) of 0.075 mu M and an LLC MK2 toxicity of 2.003 mu M. Pyrimethamine was effective at an IC50 of 0.482 mu M and a toxicity of 11.178 mu M. Trimethoprim alone was effective against the in vitro parasite. Cotrimoxazole also was effective against the parasite but at higher concentrations than those observed for artesunate and pyrimethamine. Pentamidine and quinine had no inhibitory effect over tachyzoites. Conclusions: Artesunate is proven in vitro to be a useful alternative for the treatment of toxoplasmosis, implying a subsequent in vivo effect and suggesting the mechanism of this drug against the parasite.
Resumo:
Quercetin is a potent anti-inflammatory flavonoid, but its capacity to modulate insulin sensitivity in obese insulin resistant conditions is unknown. This study investigated the effect of quercetin treatment upon insulin sensitivity of ob/ob mice and its potential molecular mechanisms. Obese ob/ob mice were treated with quercetin for 10 weeks, and L6 myotubes were treated with either palmitate or tumor necrosis factor-alpha (TNF alpha) plus quercetin. Cells and muscles were processed for analysis of glucose transporter 4 (GLUT4), TNF alpha and inducible nitric oxide synthase (iNOS) expression, and c-Jun N-terminal kinase (JNK) and inhibitor of nuclear factor-kappa B (NF-kappa B) kinase (I kappa K) phosphorylation. Myotubes were assayed for glucose uptake and NF-kappa B translocation. Chromatin immunoprecipitation assessed NF-kappa B binding to GLUT4 promoter. Quercetin treatment improved whole body insulin sensitivity by increasing GLUT4 expression and decreasing JNK phosphorylation, and TNF alpha and iNOS expression in skeletal muscle. Quercetin suppressed palmitate-induced upregulation of TNF alpha and iNOS and restored normal levels of GLUT4 in myotubes. In parallel, quercetin suppressed TNF alpha-induced reduction of glucose uptake in myotubes. Nuclear accumulation of NF-kappa B in myotubes and binding of NF-kappa B to GLUT4 promoter in muscles of ob/ob mice were also reduced by quercetin. We demonstrated that quercetin decreased the inflammatory status in skeletal muscle of obese mice and in L6 myotubes. This effect was followed by increased muscle GLUT4, with parallel improvement of insulin sensitivity. These results point out quercetin as a putative strategy to manage inflammatory-related insulin resistance. (C) 2012 Elsevier B.V. All rights reserved.