3 resultados para ANTHRACNOSE DISEASE
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Common bean, one of the most important legumes for human consumption, may have drastic reduction in yield due to anthracnose, a disease caused by the fungus Colletotrichum lindemuthianum. Rapid induction of the plant defense mechanisms is essential to establish an incompatible interaction with this pathogenic fungus. In this study, we evaluated spatial (leaves, epicotyls and hypocotyls) and temporal (24, 48, 72 and 96 hours after inoculation [HAI]) relative expression (RE) of 12 defense-related transcripts selected from previously developed ESTs libraries, during incompatible interaction between the resistant common bean genotype SEL 1308 and the avirulent anthracnose pathogen race 73, using real time quantitative RT-PCR (RT-qPCR) analysis. All selected transcripts, including the ones coding for pathogenesis-related (PR) proteins (PR1a, PR1b, PR2, and PR16a and PR16b) were differentially regulated upon pathogen inoculation. The expression levels of these transcripts were dependent on the tissue and time post inoculation. This study contributes to a better understanding of the kinetics of induced defenses against a fungal pathogen of common bean and may be used as a base line to study defenses against a broad range of pathogens including bacteria as well as non-host resistance. (C) 2012 Elsevier GmbH. All rights reserved.
Resumo:
Generation means was used to study the mode of inheritance of resistance to anthracnose stalk rot in tropical maize. Each population was comprised of six generations in two trials under a randomized block design. Inoculations were performed using a suspension of 105 conidia mL(-1) applied into the stalk. Internal lesion length was directly measured by opening the stalk thirty days after inoculation. Results indicated contrasting modes of inheritance. In one population, dominant gene effects predominated. Besides, additive x dominant and additive x additive interactions were also found. Intermediate values of heritability indicated a complex resistance inheritance probably conditioned by several genes of small effects. An additive-dominant genetic model sufficed to explain the variation in the second population, where additive gene effects predominated. Few genes of major effects control disease resistance in this cross. Heterosis widely differed between populations, which can be attributed to the genetic background of the parental resistant lines.
Resumo:
This work aimed to evaluate the efficiency of fungicides in controlling in vitro and in vivo the causal agents of anthracnose (Colletotrichum gloeosporioides and C. acutatum) and black spot (Guignardia psidii) and evaluate the effect of alternative products to control these diseases. Inhibition of mycelial growth of the pathogens was evaluated for ten fungicides at concentrations of 1, 10 and 100 mg L-1 of active ingredient in potato-dextrose-agar medium. The effectiveness of the fungicides azoxystrobin + difenoconazole, cyproconazole, pyraclostrobin, tebuconazole and tebuconazole + trifloxystrobin in controlling disease incidence and severity of anthracnose, through applications in the field, was measured in fruits collected at three stages of maturation, according to the skin color ( dark green, light green and yellowish green). In postharvest dipping of fruits, the products evaluated were citric acid, peracetic acid, salicylic acid, sodium bicarbonate, chlorine dioxide, Ecolife (R) and chitosan. The fungicides azoxystrobin + difenoconazole, pyraclostrobin, tebuconazole and trifloxystrobin + tebuconazole were highly effective in inhibiting the in vitro mycelial growth of G. psidii and moderately to highly effective in inhibiting C. acutatum and C. gloeosporioides. In field conditions, the fungicide azoxystrobin + difenoconazole was effective in controlling anthracnose and black spot in fruit at three maturity stage ( skin color yellowish green). The alternative products tested were ineffective in the curative control of anthracnose and early blight at postharvest of guava.