2 resultados para ALPHA-KETOGLUTARATE DEHYDROGENASE

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lewy bodies and Lewy neurites, neuropathological hallmarks of several neurological diseases, are mainly made of filamentous assemblies of alpha-synuclein. However, other macromolecules including Tau, ubiquitin, glyceraldehyde-3-phosphate dehydrogenase, and glycosaminoglycans are routinely found associated with these amyloid deposits. Glyceraldehyde-3-phosphate dehydrogenase is a glycolytic enzyme that can form fibrillar aggregates in the presence of acidic membranes, but its role in Parkinson disease is still unknown. In this work, the ability of heparin to trigger the amyloid aggregation of this protein at physiological conditions of pH and temperature is demonstrated by infrared and fluorescence spectroscopy, dynamic light scattering, small angle x-ray scattering, circular dichroism, and fluorescence microscopy. Aggregation proceeds through the formation of short rod-like oligomers, which elongates in one dimension. Heparan sulfate was also capable of inducing glyceraldehyde-3-phosphate dehydrogenase aggregation, but chondroitin sulfates A, B, and C together with dextran sulfate had a negligible effect. Aided with molecular docking simulations, a putative binding site on the protein is proposed providing a rational explanation for the structural specificity of heparin and heparan sulfate. Finally, it is demonstrated that in vitro the early oligomers present in the glyceraldehyde-3-phosphate dehydrogenase fibrillation pathway promote alpha-synuclein aggregation. Taking into account the toxicity of alpha-synuclein prefibrillar species, the heparin-induced glyceraldehyde-3-phosphate dehydrogenase early oligomers might come in useful as a novel therapeutic strategy in Parkinson disease and other synucleinopathies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Susceptibility to infections, autoimmune disorders and tumor progression is strongly influenced by the activity of the endocrine and nervous systems in response to a stressful stimulus. When the adaptive system is switched on and off efficiently, the body is able to recover from the stress imposed. However, when the system is activated repeatedly or the activity is sustained, as during chronic or excessive stress, an allostatic load is generated, which can lead to disease over long periods of time. We investigated the effects of chronic cold stress in BALB/c mice (4 degrees C/4 h daily for 7 days) on functions of macrophages. We found that chronic cold stress induced a regulatory phenotype in macrophages, characterized by diminished phagocytic ability, decreased TNF-alpha and IL-6 and increased IL-10 production. In addition, resting macrophages from mice exposed to cold stress stimulated spleen cells to produce regulatory cytokines, and an immunosuppressive state that impaired stressed mice to control Trypanosoma cruzi proliferation. These regulatory effects correlated with an increase in macrophage expression of 11 beta-hydroxysteroid dehydrogenase, an enzyme that converts inactive glucocorticoid into its active form. As stress is a common aspect of modern life and plays a role in the etiology of many diseases, the results of this study are important for improving knowledge regarding the neuro-immune-endocrine interactions that occur during stress and to highlight the role of macrophages in the immunosuppression induced by chronic stress. (C) 2011 Elsevier Inc. All rights reserved.