2 resultados para ADIS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Lithium salts have a well-established role in the treatment of major affective disorders. More recently, experimental and clinical studies have provided evidence that lithium may also exert neuroprotective effects. In animal and cell culture models, lithium has been shown to increase neuronal viability through a combination of mechanisms that includes the inhibition of apoptosis, regulation of autophagy, increased mitochondrial function, and synthesis of neurotrophic factors. In humans, lithium treatment has been associated with humoral and structural evidence of neuroprotection, such as increased expression of anti-apoptotic genes, inhibition of cellular oxidative stress, synthesis of brain-derived neurotrophic factor (BDNF), cortical thickening, increased grey matter density, and hippocampal enlargement. Recent studies addressing the inhibition of glycogen synthase kinase-3 beta (GSK3B) by lithium have further suggested the modification of biological cascades that pertain to the pathophysiology of Alzheimer's disease (AD). A recent placebo-controlled clinical trial in patients with amnestic mild cognitive impairment (MCI) showed that long-term lithium treatment may actually slow the progression of cognitive and functional deficits, and also attenuate Tau hyperphosphorylation in the MCI-AD continuum. Therefore, lithium treatment may yield disease-modifying effects in AD, both by the specific modification of its pathophysiology via inhibition of overactive GSK3B, and by the unspecific provision of neurotrophic and neuroprotective support. Although the clinical evidence available so far is promising, further experimentation and replication of the evidence in large scale clinical trials is still required to assess the benefit of lithium in the treatment or prevention of cognitive decline in the elderly.
Resumo:
Background and Objective The use of metformin throughout gestation by women with polycystic ovary syndrome (PCOS) and type 2 diabetes mellitus (T2DM) significantly reduces the number of first-trimester spontaneous abortions and the rate of occurrence of gestational diabetes and hypertensive syndromes. Metformin is taken up into renal tubular cells by organic cation transport 2 (OCT2) and eliminated unchanged into the urine. The objective of this study was to analyse the influence of T2DM on the pharmacokinetics of metformin in obese pregnant women and in a control group of non-diabetic obese pregnant women with PCOS. Methods Eight non-diabetic obese pregnant women with PCOS and nine obese pregnant women with T2DM taking oral metformin 850 mg every 12 h were evaluated throughout gestation. Serial blood samples were collected over a 12-h period during the third trimester of pregnancy. Steady-state plasma concentrations of metformin were determined by high-performance liquid chromatography with a UV detector. The pharmacokinetic results of the two groups, reported as median and 25th and 75th percentile, were compared statistically using the Mann Whitney test, with the level of significance set at p < 0.05. Results The pharmacokinetic parameters detected for PCOS versus T2DM patients, reported as median, were, respectively: elimination half-life 3.75 versus 4.00 h; time to maximum concentration 2.00 versus 3.00 h; maximum concentration 1.42 versus 1.21 mu g/mL; mean concentration 0.53 versus 0.56 mu g/mL; area under the plasma concentration time curve from time zero to 12 h 6.42 versus 6.73 mu g.h/mL; apparent total oral clearance 105.39 versus 98.38 L/h; apparent volume of distribution after oral administration 550.51 versus 490.98 L; and fluctuation (maximum minimum concentration variation) of 179.56 versus 181.73%. No significant differences in pharmacokinetic parameters were observed between the groups. Conclusion T2DM in the presence of insulin use does not influence the pharmacokinetics of metformin in pregnant patients, demonstrating the absence of a need to increase the dose, and consequently does not influence the OCT2-mediated transport in pregnant women with PCOS.