14 resultados para ADENYLATE-CYCLASE
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Overstimulation of the glutamatergic system (excitotoxicity) is involved in various acute and chronic brain diseases. Several studies support the hypothesis that guanosine-5'-monophosphate (GMP) can modulate glutamatergic neurotransmission. The aim of this study was to evaluate the effects of chronically administered GMP on brain cortical glutamatergic parameters in mice. Additionally, we investigated the neuroprotective potential of the GMP treatment submitting cortical brain slices to oxygen and glucose deprivation (OGD). Moreover, measurements of the cerebrospinal fluid (CSF) purine levels were performed after the treatment. Mice received an oral administration of saline or GMP during 3 weeks. GMP significantly decreases the cortical brain glutamate binding and uptake. Accordingly, GMP reduced the immunocontent of the glutamate receptors subunits, NR2A/B and GluR1 (NMDA and AMPA receptors, respectively) and glutamate transporters EAAC1 and GLT1. GMP treatment significantly reduced the immunocontent of PSD-95 while did not affect the content of Snap 25, GLAST and GFAP. Moreover, GMP treatment increased the resistance of neocortex to OGD insult. The chronic GMP administration increased the CSF levels of GMP and its metabolites. Altogether, these findings suggest a potential modulatory role of GMP on neocortex glutamatergic system by promoting functional and plastic changes associated to more resistance of mice neocortex against an in vitro excitotoxicity event.
Resumo:
The human parasite Schistosoma mansoni is totally dependent on the purine salvage pathway in order to supply large quantities of purine precursors for its energy and DNA biosynthetic needs. Adenylate kinase (ADK) is responsible for the conversion of AMP (produced by the adenosine kinase reaction) into ADP, which is subsequently converted into ATP by nucleoside diphosphate kinase (NDPK). ADK and NDPK are the most active enzymes of the pathway, probably reflecting an evolutionary adaptation due to the intense use of the branch in which they participate. However, notwithstanding their importance very little information has been accumulated found regarding these enzymes. In this work two adenylate kinases from S. mansoni were cloned and heterologously expressed in Escherichia coil. The purified products were utilized in activity assays, and displayed kinetic parameters similar to the corresponding human orthologous proteins. The cytosolic S. mansoni ADK was crystallized and its structure solved allowing us to detect a difference in the nucleotide binding site when compared with the human ortholog. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Today it is known that severe burns can be accompanied by the phenomenon of vasoplegic syndrome (VS), which is manifested by persistent and diffuse vasodilation, hypotension and low vascular resistance, resulting in circulatory and respiratory failure. The decrease in systemic vascular resistance observed in VS is associated with excessive production of nitric oxide (NO). In the last 2 decades, studies have reported promising results from the administration of an NO competitor, methylene blue (MB), which is an inhibitor of the soluble guanylate cyclase (sGC), in the treatment of refractory cases of vasoplegia. This medical hypothesis rationale is focused on the tripod of burns/vasoplegia catecholamine resistant/methylene blue. This article has 3 main objectives: 1) to study the guanylate cyclase inhibition by MB in burns; 2) to suggest MB as a viable, safe and useful co-adjuvant therapeutic tool of fluid resuscitation, and; 3) to suggest MB as burns hypotensive vasoplegia amine-resistant treatment.
Resumo:
BACKGROUND AND PURPOSE Phagocyte function is critical for host defense against infections. Defects in phagocytic function lead to several primary immunodeficiencies characterized by early onset of recurrent and severe infections. In this work, we further investigated the effects of BAY 41-2272, a soluble guanylate cyclase (sGC) agonist, on the activation of human peripheral blood monocytes (PBM) and THP-1 cells. EXPERIMENTAL APPROACH THP-1 cells and PBM viability was evaluated by methylthiazoletetrazolium assay; reactive oxygen species production by lucigenin chemiluminescence; gene and protein expression of NAPDH oxidase components by qRT-PCR and Western blot analysis, respectively; phagocytosis and microbicidal activity by co-incubation, respectively, with zymosan and Escherichia coli; and cytokine release by elisa. KEY RESULTS BAY 41-2272, compared with the untreated group, increased spreading of monocytes by at least 35%, superoxide production by at least 50%, and gp91PHOX and p67PHOX gene expression 20 to 40 times, in both PBM and THP-1 cells. BAY 41-2272 also augmented phagocytosis of zymosan particles threefold compared with control, doubled microbicidal activity against E. coli and enhanced the release of TNF-a and IL-12p70 by both PBM and THP-1 cells. Finally, by inhibiting sGC with ODQ, we showed that BAY 41-2272-induced superoxide production and phagocytosis is not dependent exclusively on sGC activation. CONCLUSIONS AND IMPLICATIONS In addition to its ability to induce vasorelaxation and its potential application for therapy of vascular diseases, BAY 41-2272 was shown to activate human mononuclear phagocytes. Hence, it is a novel pro-inflammatory drug that may be useful for controlling infections in the immunocompromised host.
Resumo:
Crotalphine, a 14 amino acid peptide first isolated from the venom of the South American rattlesnake Crotalus durissus terrificus, induces a peripheral long-lasting and opioid receptor-mediated antinociceptive effect in a rat model of neuropathic pain induced by chronic constriction of the sciatic nerve. In the present study, we further characterized the molecular mechanisms involved in this effect, determining the type of opioid receptor responsible for this effect and the involvement of the nitric oxide-cyclic GMP pathway and of K+ channels. Crotalphine (0.2 or 5 mu g/kg, orally; 0.0006 mu g/paw), administered on day 14 after nerve constriction, inhibited mechanical hyperalgesia and low-threshold mechanical allodynia. The effect of the peptide was antagonized by intraplantar administration of naltrindole, an antagonist of delta-opioid receptors, and partially reversed by norbinaltorphimine, an antagonist of kappa-opioid receptors. The effect of crotalphine was also blocked by 7-nitroindazole, an inhibitor of the neuronal nitric oxide synthase; by 1H-(1,2,4) oxadiazolo[4,3-a]quinoxaline-1-one, an inhibitor of guanylate cyclase activation; and by glibenclamide, an ATP-sensitive K+ channel blocker. The results suggest that peripheral delta-opioid and kappa-opioid receptors, the nitric oxide-cyclic GMP pathway, and ATP-sensitive K+ channels are involved in the antinociceptive effect of crotalphine. The present data point to the therapeutic potential of this peptide for the treatment of chronic neuropathic pain. Behavioural Pharmacology 23:14-24 (C) 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
FAPESP [2010/50882-1]
Resumo:
Crustacean color change results partly from granule aggregation induced by red pigment concentrating hormone (RPCH). In shrimp chromatophores, both the cyclic GMP (3', 5'-guanosine monophosphate) and Ca2+ cascades mediate pigment aggregation. However, the signaling elements upstream and downstream from cGMP synthesis by GC-S (cytosolic guanylyl cyclase) remain obscure. We investigate post-RPCH binding events in perfused red ovarian chromatophores to disclose the steps modulating cGMP concentration, which regulates granule translocation. The inhibition of calcium/calmodulin complex (Ca2+/CaM) by N-(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide (W7) induces spontaneous aggregation but inhibits RPCH-triggered aggregation, suggesting a role in pigment aggregation and dispersion. Nitric oxide synthase inhibition by N omega-nitro-L-arginine methyl ester hydrochloride (L-NAME) strongly diminishes RPCH-induced aggregation; protein kinase G inhibition (by rp-cGMPs-triethylamine) reduces RPCH-triggered aggregation and provokes spontaneous dispersion, disclosing NO/PKG participation in aggregation signaling. Myosin light chain phosphatase inhibition (by cantharidin) accelerates RPCH-triggered aggregation, whereas Rho-associated protein kinase inhibition (by Y-27632, H-11522) reduces RPCH-induced aggregation and accelerates dispersion. MLCP (myosin light chain kinase) and ROCK (Rho-associated protein kinase) may antagonistically regulate myosin light chain (MLC) dephosphorylation/phosphorylation during pigment dispersion/aggregation. We propose the following general hypothesis for the cGMP/Ca2+ cascades that regulate pigment aggregation in crustacean chromatophores: RPCH binding increases Ca2+ (int), activating the Ca2+/CaM complex, releasing NOS-produced nitric oxide, and causing GC-S to synthesize cGMP that activates PKG, which phosphorylates an MLC activation site. Myosin motor activity is initiated by phosphorylation of an MLC regulatory site by ROCK activity and terminated by MLCP-mediated dephosphorylation. Qualitative comparison reveals that this signaling pathway is conserved in vertebrate and invertebrate chromatophores alike.
Resumo:
RpfG is a member of a class of wide spread bacterial two-component regulators with an HD-GYP cyclic di-GMP phosphodiesterase domain. In the plant pathogen Xanthomonas campestris, RpfG together with the sensor kinase RpfC regulates multiple factors as a response to the cell-to-cell Diffusible Signalling Factor (DSF). A dynamic physical interaction of RpfG with two diguanylate cyclase (GGDEF) domain proteins controls motility. Here we show that, contrary to expectation, regulation of motility by the GGDEF domain proteins does not depend upon their cyclic di-GMP synthetic activity. Furthermore we show that the complex of RpfG and GGDEF domain proteins recruits a specific PilZ domain adaptor protein, and this complex then interacts with the pilus motor proteins PilU and PiIT. The results support a model in which DSF signalling influences motility through the highly regulated dynamic interaction of proteins that affect pilus action. A specific motif that we identify to be required for HD-GYP domain interaction is conserved in a number of GGDEF domain proteins, suggesting that regulation via interdomain interactions is of broad relevance.
Resumo:
We investigated the role of reactive oxygen species (ROS) and nitric oxide (NO) in ethanol-induced relaxation. Vascular reactivity experiments showed that ethanol (0.03-200 mmol/L) induced relaxation in endothelium-intact and denuded rat aortic rings isolated from male Wistar rats. Pre-incubation of intact or denuded rings with L-NAME (non selective NOS inhibitor, 100 mu mol/L), 7-nitroindazole (selective nNOS inhibitor, 100 mu mol/L), ODQ (selective inhibitor of guanylyl cyclase enzyme, I mu mol/L), glibenclamide (selective blocker of ATP-sensitive K+ channels, 3 mu mol/L) and 4-aminopyridine (selective blocker of voltage-dependent K+ channels, 4-AP, 1 mmol/L) reduced ethanol-induced relaxation. Similarly, tiron (superoxide anion (O-2(-)) scavenger, 1 mmol/L) and catalase (hydrogen peroxide (H2O2) scavenger, 300 U/mL) reduced ethanol-induced relaxation to a similar extent in both endothelium-intact and denuded rings. Finally, prodifen (non-selective cytochrome P450 enzymes inhibitor, 10 mu mol/L) and 4-methylpyrazole (selective alcohol dehydrogenase inhibitor, 10 mu mol/L) reduced ethanol-induced relaxation. In cultured aortic vascular smooth muscle cells (VSMCs), ethanol stimulated generation of NO, which was significantly inhibited by L-NAME. In endothelial cells, flow cytometry studies showed that ethanol increased cytosolic Ca2+ concentration ([Ca2+]c), O-2(-) and cytosolic NO concentration ([NO]c). Tiron inhibited ethanol-induced increase in [Ca-2]c and [NO]c. The major new finding of this work is that ethanol induces relaxation via redox-sensitive and NO-cGMP-dependent pathways through direct effects on ROS production and NO signaling. These findings identify putative molecular mechanisms whereby ethanol, at pharmacological concentrations, influences vascular reactivity. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
beta-Adrenoceptor (beta-AR)-mediated relaxation plays an important role in the regulation of vascular tone. beta-AR-mediated vascular relaxation is reduced in various disease states and aging. We hypothesized that beta-AR-mediated vasodilatation is impaired in DOCA-salt hypertension due to alterations in the cAMP pathway. beta-AR-mediated relaxation was determined in small mesenteric arteries from DOCA-salt hypertensive and control uninephrectomized (Uni) rats. To exclude nitric oxide (NO) and cyclooxygenase (COX) pathways, relaxation responses were determined in the presence of L-NNA and indomethacin, NO synthase inhibitor and COX inhibitors, respectively. Isoprenaline (ISO)-induced relaxation was reduced in arteries from DOCA-salt compared to Uni rats. Protein kinase A (PKA) inhibitors (H89 or Rp-cAMPS) or adenylyl cyclase inhibitor (SQ22536) did not abolish the difference in ISO-induced relaxation between the groups. Forskolin (adenylyl cyclase activator)-induced relaxation was similar between the groups. The inhibition of IKCa/SKCa channels (TRAM-34 plus UCL1684) or BKCa channels (iberiotoxin) reduced ISO-induced relaxation only in Uni rats and abolished the relaxation differences between the groups. The expression of SKCa channel was decreased in DOCA-salt arteries. The expression of BKCa channel a subunit was increased whereas the expression of BKCa channel p subunit was decreased in DOCA-salt arteries. The expression of receptor for activated C kinase 1 (RACK1), which is a binding protein for BKG, channel and negatively modulates its activity, was increased in DOCA-salt arteries. These results suggest that the impairment of beta-AR-mediated relaxation in DOCA-salt mesenteric arteries may be attributable to altered IKCa/SKCa and/or BKCa channels activities rather than cAMP/PKA pathway. Impaired beta-AR-stimulated BKCa channel activity may be due to the imbalance between its subunit expressions and RACK1 upregulation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Lessa LM, Carraro-Lacroix LR, Crajoinas RO, Bezerra CN, Dariolli R, Girardi AC, Fonteles MC, Malnic G. Mechanisms underlying the inhibitory effects of uroguanylin on NHE3 transport activity in renal proximal tubule. Am J Physiol Renal Physiol 303: F1399-F1408, 2012. First published September 5, 2012; doi: 10.1152/ajprenal.00385.2011.-We previously demonstrated that uroguanylin (UGN) significantly inhibits Na+/H+ exchanger (NHE)3-mediated bicarbonate reabsorption. In the present study, we aimed to elucidate the molecular mechanisms underlying the action of UGN on NHE3 in rat renal proximal tubules and in a proximal tubule cell line (LLC-PK1). The in vivo studies were performed by the stationary microperfusion technique, in which we measured H+ secretion in rat renal proximal segments, through a H+-sensitive microelectrode. UGN (1 mu M) significantly inhibited the net of proximal bicarbonate reabsorption. The inhibitory effect of UGN was completely abolished by either the protein kinase G (PKG) inhibitor KT5823 or by the protein kinase A (PKA) inhibitor H-89. The effects of UGN in vitro were found to be similar to those obtained by microperfusion. Indeed, we observed that incubation of LLC-PK1 cells with UGN induced an increase in the intracellular levels of cAMP and cGMP, as well as activation of both PKA and PKG. Furthermore, we found that UGN can increase the levels of NHE3 phosphorylation at the PKA consensus sites 552 and 605 in LLC-PK1 cells. Finally, treatment of LLC-PK1 cells with UGN reduced the amount of NHE3 at the cell surface. Overall, our data suggest that the inhibitory effect of UGN on NHE3 transport activity in proximal tubule is mediated by activation of both cGMP/PKG and cAMP/PKA signaling pathways which in turn leads to NHE3 phosphorylation and reduced NHE3 surface expression. Moreover, this study sheds light on mechanisms by which guanylin peptides
Resumo:
Drugs that release nitric oxide (NO) usually have limitations due to their harmful effects. Sodium nitroprusside (SNP) induces a rapid hypotension that leads to reflex tachycardia, which could be an undesirable effect in patients with heart disease, a common feature of hypertension. The nitrosyl ruthenium complex [Ru(terpy)(bdq)NO+](3+) (TERPY) is a NO donor that is less potent than SNP in denuded aortic rings. This study evaluated the hypotension and vasorelaxation induced by this NO donor in Wistar (W) and spontaneously hypertensive rats (SHR) and compared to the results obtained with SNP. Differently from the hypotension induced by SNP, the action of TERPY was slow, long lasting and it did not lead to reflex tachycardia in both groups. The hypotension induced by the NO-donors was more potent in SHR than in W. TERPY induced relaxation with similar efficacy to SNP, although its potency is lower in both strains. The relaxation induced by TERPY is similar in W and SHR, but SNP is more potent and efficient in SHR. The relaxation induced by TERPY is partially dependent on guanylate cyclase in SHR aorta. The NO released from the NO donors measured with DAF-2 DA by confocal microscopy shows that TERPY releases similar amounts of NO in W and SHR, while SNP releases more NO in SHR aortic rings. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Signal transduction pathways mediated by cyclic-bis(3'→5')-dimeric GMP (c-di-GMP) control many important and complex behaviors in bacteria. C-di-GMP is synthesized through the action of GGDEF domains that possess diguanylate cyclase activity and is degraded by EAL or HD-GYP domains with phosphodiesterase activity. There is mounting evidence that some important c-di-GMP-mediated pathways require protein-protein interactions between members of the GGDEF, EAL, HD-GYP and PilZ protein domain families. For example, interactions have been observed between PilZ and the EAL domain from FimX of Xanthomonas citri (Xac). FimX and PilZ are involved in the regulation of type IV pilus biogenesis via interactions of the latter with the hexameric PilB ATPase associated with the bacterial inner membrane. Here, we present the crystal structure of the ternary complex made up of PilZ, the FimX EAL domain (FimXEAL) and c-di-GMP. PilZ interacts principally with the lobe region and the N-terminal linker helix of the FimXEAL. These interactions involve a hydrophobic surface made up of amino acids conserved in a non-canonical family of PilZ domains that lack intrinsic c-di-GMP binding ability and strand complementation that joins β-sheets from both proteins. Interestingly, the c-di-GMP binds to isolated FimXEAL and to the PilZ-FimXEAL complex in a novel conformation encountered in c-di-GMP-protein complexes in which one of the two glycosidic bonds is in a rare syn conformation while the other adopts the more common anti conformation. The structure points to a means by which c-di-GMP and PilZ binding could be coupled to FimX and PilB conformational states