6 resultados para ACID ELECTROLYTE
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This study compared acid-base and biochemical changes and quality of recovery in male cats with experimentally induced urethral obstruction and anesthetized with either propofol or a combination of ketamine and diazepam for urethral catheterization. Ten male cats with urethral obstruction were enrolled for urethral catheterization and anesthetized with either ketamine-diazepam (KD) or propofol (P). Lactated Ringer's solution was administered by intravenous (IV) beginning 15 min before and continuing for 48 h after relief of urethral obstruction. Quality of recovery and time to standing were evaluated. The urethral catheter was maintained to measure urinary output. Hematocrit (Hct), total plasma protein (TPP), albumin, total protein (TP), blood urea nitrogen (BUN), creatinine, pH, bicarbonate (HCO3-), chloride, base excess, anion gap, sodium, potassium, and partial pressure of carbon dioxide in mixed venous blood (pvCO(2)) were measured before urethral obstruction, at start of fluid therapy (0 h), and at subsequent intervals. The quality of recovery and time to standing were respectively 4 and 75 min in the KD group and 5 and 16 min in the P group. The blood urea nitrogen values were increased at 0, 2, and 8 h in both groups. Serum creatinine increased at 0 and 2 h in cats administered KD and at 0, 2, and 8 h in cats receiving P, although the values were above the reference range in both groups until 8 h. Acidosis occurred for up to 2 h in both groups. Acid-base and biochemical stabilization were similar in cats anesthetized with propofol or with ketamine-diazepam. Cats that received propofol recovered much faster, but the ketamine-diazepam combination was shown to be more advantageous when treating uncooperative cats as it can be administered by intramuscular (IM) injection.
Resumo:
The electro-oxidation of ethanol was investigated on electrodeposited layers of Pd, Pt, and Rh in alkaline electrolyte. The reaction products were monitored by experiments of online differential electrochemical mass spectrometry (DEMS). Potentiodynamic curves for the ethanol electro-oxidation catalyzed by these three different metal electrocatalysts showed similar onset potentials, but the highest Faradaic current peak was observed for the Pt electrocatalyst. Online DEMS experiments evidenced similar amounts of CO2 for the three different materials, but Pd presented the higher production of ethylacetate (acetic acid). This indicated that the electrochemical oxidation of ethanol on the Pd surface occurred to a higher extent. The formation of methane, which was observed for Pt and Rh, after potential excursions to lower potentials, was absent for Pd. On the basis of the obtained results, it was stated that, on Pt and Rh, the formation of CO2 occurs mainly via oxidation of CO and CH (x,ad) species formed after dissociative adsorption of ethanol or ethoxy species that takes place only at low potentials. This indicates that the dissociative adsorption of ethanol or ethoxy species is inhibited at higher potentials on Pt and Rh. On the other hand, on the Pd electrocatalyst, the reaction may occur via nondissociative adsorption of ethanol or ethoxy species at lower potentials, followed by oxidation to acetaldehyde and, after that, by a further oxidation step to acetic acid on the electrocatalyst surface. Additionally, in a parallel route, the acetaldehyde molecules adsorbed on the Pd surface can be deprotonated, yielding a reaction intermediate in which the carbon-carbon bond is less protected, and therefore, it can be dissociated on the Pd surface, producing CO2, after potential excursions to higher potentials.
Resumo:
Dispersion of photoluminescent rare earth metal complexes in polymer matrices is of great interest due to the possibility of avoiding the saturation of the photoluminescent signal. The possibility of using a natural ionic conducting polymer matrix was investigated in this study. Samples of agar-based electrolytes containing europium picrate were prepared and characterized by physical and chemical analyses. The FTIR spectra indicated strong interaction of agar O-H and 3.6-anhydro-galactose C-O groups with glycerol and europium picrate. The DSC analyses revealed no glass transition temperature of the samples in the -60 to 250 degrees C range. From the thermogravimetry (TG), a thermal stability of the samples of up to 180 degrees C was stated. The membranes were subjected to ionic conductivity measurement, which provided the values of 2.6 x 10(-6) S/cm for the samples with acetic acid and 1.6 x 10(-5) S/cm for the samples without acetic acid. Moreover, the temperature-dependent ionic conductivity measurements revealed both Arrhenius and VTF models of the conductivity depending on the sample. Surface visualization through scanning electron microscopy (SEM) demonstrated good uniformity. The samples were also applied in small electrochromic devices and showed good electrochemical stability. The present work confirmed that these materials may perform as satisfactory multifunctional component layers in the field of electrochemical devices. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The performance of an ABPBI-based High Temperature H-2/O-2 PEMFC system was studied under different experimental conditions. Increasing the temperature from 130 to 170 degrees C improved the cell performance, even though further increase was not beneficial for the system. Humidification of the H-2 stream ameliorated this behaviour, even though operating above 170 degrees C is not advisable in terms of cell performance. A significant electrolyte dehydration seems to negatively affect the fuel cell performance, especially in the case of the anode. In the presence of 2% vol. CO in the H-2 stream, the temperature exerted a positive effect on the cell performance, reducing the strong adsorption of this poison on the platinum sites. Moreover, humidification of the H-2 + CO stream increased the maximum power densities of the cell, further alleviating the CO poisoning effects. Actual CO-O-2 fuel cell results confirmed the significant beneficial effect of the relative humidity on the kinetics of the CO oxidation process. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Nafion membranes series N117 doped with ammonium, at different cation fractions (H+/NH4+), were investigated for ionic transport and water vapor uptake, for several water activities and temperatures. Ammonium cations change both properties of the polymer in a similar manner. Membrane ionic conductivity and water vapor uptake (lambda) decrease as the ammonium concentration increases in the polymer. Ionic transport activation energies are calculated and the transport mechanism of ammonium ions in Nafion is discussed. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.040203jes] All rights reserved.
Resumo:
The process for obtaining polypyrrole-2-carboxylic acid (PPY-2-COOH) films in acetonitrile was investigated using cyclic voltammetry, electrochemical quartz crystal microgravimetry (EQCM), and infrared spectroscopy (FTIR). Different potential ranges were applied during cyclic voltammetry experiments with the aim of obtaining films without and with the presence of controlled amounts of water added in acetonitrile. The FTIR spectra of the films have evidenced that cations and anions from the electrolyte solution were incorporated into the PPY-2-COOH structure, with a preferential adsorption of cations. After chemically immobilizing polyphenoloxidase (tyrosinase, PPO), PPY-2-COOH/PPO films were build for amperometric detection of catechol, establishing a linear limit of concentrations ranging from 5.0 x 10-4 to 2.5 x 10-2 mol L-1.