18 resultados para A full-length play

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Characterization of the matrix metalloproteinase-2 (MMP-2) substrates and understanding of its function remain difficult because up to date preparations containing minor amounts of other eukaryotic proteins that are co-purified with MMP-2 are still used. In this work, the expression of a soluble and functional full-length recombinant human MMP-2 (rhMMP-2) in the cytoplasm of Escherichia coli is reported, and the purification of this metalloproteinase is described. Culture of this bacterium at 18 degrees C culminated in maintenance of the soluble and functional rhMMP-2 in the soluble fraction of the E. coli lysate and its purification by affinity with gelatin-sepharose yielded approximately 0.12 mg/L of medium. Western Blotting and zymographic analysis revealed that the most abundant form was the 72-kDa MMP-2, but some gelatinolytic bands corresponding to proteins with lower molecular weight were also detected. The obtained rhMMP-2 was demonstrated to be functional in a gelatinolytic fluorimetric assay, suggesting that the purified rhMMP-2 was correctly folded. The method described here involves fewer steps, is less expensive, and is less prone to contamination with other proteinases and MMP inhibitors as compared to expression of rhMMP-2 in eukaryotic tissue culture. This protocol will facilitate the use of the full-length rhMMP-2 expressed in bacteria and will certainly help researchers to acquire new knowledge about the substrates and biological activities of this important proteinase. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report for the first time the genetic and biological characterization of 10 HIV-1 primary isolates representing CRF28_BF and CRF29_BF together with additional unique BF recombinant forms (URFs) obtained by PBMC cocultivation. Recombination is an important factor promoting the increase in the genetic diversity of HIV-1. Notably, more than 20% of HIV-1 sequences worldwide were recombinants. Several recombinant viruses were reported in Brazil, and six circulating recombinant forms (CRFs) have been identified (CRF28_BF, CRF29_BF, CRF31_BC, CRF39_BF, CRF40_BF, and CRF46_BF). CRF28_BF and CRF29_BF were found to infect almost 30% of the patients in Sao Paulo State. The near full-length genomes of these 10 primary isolates were amplified by nested PCR in three overlapping segments, purified, and sequenced. Three samples were related to CRF28_BF, three to CRF29_BF, and four were unique recombinant forms (URFs), as determined by their breakpoint profile determined with the jpHMM program. Additionally, the coreceptor usage of these isolates was investigated in vitro using GHOST assays, which revealed three dual-tropic (X4/R5) viruses, four lymphotropic (X4) viruses, and three macrophage-tropic (R5) viruses with different V3-loop motifs, which challenges the notion that GWGR-carrying viruses are macrophage-tropic only. In sum, we report a much-anticipated well-characterized panel of viruses representing CRF28_BF, CRF29_BF, and URFs from Sao Paulo State, Brazil.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Crotamine, a 42-residue polypeptide derived from the venom of the South American rattlesnake Crotalus durissus terrificus, has been shown to be a cell-penetrating protein that targets chromosomes, carries plasmid DNA into cells, and shows specificity for actively proliferating cells. Given this potential role as a nucleic acid-delivery vector, we have studied in detail the binding of crotamine to single- and double-stranded DNAs of different lengths and base compositions over a range of ionic conditions. Agarose gel electrophoresis and ultraviolet spectrophotometry analysis indicate that complexes of crotamine with long-chain DNAs readily aggregate and precipitate at low ionic strength. This aggregation, which may be important for cellular uptake of DNA, becomes less likely with shorter chain length. 25-mer oligonucleotides do not show any evidence of such aggregation, permitting the determination of affinities and size via fluorescence quenching experiments. The polypeptide binds non-cooperatively to DNA, covering about 5 nucleotide residues when it binds to single (ss) or (ds) double stranded molecules. The affinities of the protein for ss-vs. ds-DNA are comparable, and inversely proportional to salt levels. Analysis of the dependence of affinity on [NaCl] indicates that there are a maximum of,3 ionic interactions between the protein and DNA, with some of the binding affinity attributable to non-ionic interactions. Inspection of the three-dimensional structure of the protein suggests that residues 31 to 35, Arg-Trp-Arg-Trp-Lys, could serve as a potential DNA-binding site. A hexapeptide containing this sequence displayed a lower DNA binding affinity and salt dependence as compared to the full-length protein, likely indicative of a more suitable 3D structure and the presence of accessory binding sites in the native crotamine. Taken together, the data presented here describing crotamine-DNA interactions may lend support to the design of more effective nucleic acid drug delivery vehicles which take advantage of crotamine as a carrier with specificity for actively proliferating cells. Citation: Chen P-C, Hayashi MAF, Oliveira EB, Karpel RL (2012) DNA-Interactive Properties of Crotamine, a Cell-Penetrating Polypeptide and a Potential Drug Carrier. PLoS ONE 7(11): e48913. doi:10.1371/journal.pone.0048913

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Protein folding, refolding and degradation are essential for cellular life and are regulated by protein homeostatic processes such those that involve the molecular chaperone DnaK/Hsp70 and its co-chaperone DnaJ. Hsp70 action is initiated when proteins from the DnaJ family bind an unfolded protein for delivery purposes. In eukaryotes, the DnaJ family can be divided into two main groups, Type I and Type II, represented by yeast cytosolic Ydj1 and Sis1, respectively. Although sharing some unique features both members of the DnaJ family, Ydj1 and Sis1 are structurally and functionally distinct as deemed by previous studies, including the observation that their central domains carry the structural and functional information even in switched chimeras. In this study, we combined several biophysical tools for evaluating the stability of Sis1 and mutants that had the central domains (named Gly/Met rich domain and C-terminal Domain I) deleted or switched to those of Ydj1 to gain insight into the role of these regions in the structure and function of Sis1. The mutants retained some functions similar to full length wild-type Sis1, however they were defective in others. We found that: 1) Sis1 unfolds in at least two steps as follows: folded dimer to partially folded monomer and then to an unfolded monomer. 2) The Gly/Met rich domain had intrinsically disordered characteristics and its deletion had no effect on the conformational stability of the protein. 3) The deletion of the C-terminal Domain I perturbed the stability of the dimer. 4) Exchanging the central domains perturbed the conformational stability of the protein. Altogether, our results suggest the existence of two similar subdomains in the C-terminal domain of DnaJ that could be important for stabilizing each other in order to maintain a folded substrate-binding site as well as the dimeric state of the protein.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hemophilia A is the most common X-linked bleeding disorder; it is caused by deficiency of coagulation factor VIII (FVIII). Replacement therapy with rFVIII produced from human cell line is a major goal for treating hemophilia patients. We prepared a full-length recombinant FVIII (FVIII-FL), using the pMFG-P140K retroviral vector. The IRES DNA fragment was cloned upstream to the P140K gene, providing a 9.34-kb bicistronic vector. FVIII-FL cDNA was then cloned upstream to IRES, resulting in a 16.6-kb construct. In parallel, an eGFP control vector was generated, resulting in a 10.1-kb construct. The 293T cells were transfected with these constructs, generating the 293T-FVIII-FL/P140K and 293T-eGFP/P140K cell lines. In 293T-FVIII-FL/P140K cells, FVIII and P140K mRNAs levels were 4,410 (+/- 931.7)- and 295,400 (+/- 75,769)-fold higher than in virgin cells. In 293T-eGFP/P140K cells, the eGFP and P140K mRNAs levels were 1,501,000 (+/- 493,700)- and 308,000 (+/- 139,300)-fold higher than in virgin cells. The amount of FVIII-FL was 0.2 IU/mL and 45 ng/mL FVIII cells or 4.4 IU/mu g protein. These data demonstrate the efficacy of the bicistronic retroviral vector expressing FVIII-FL and MGMT(P140K), showing that it could be used for producing the FVIII-FL protein in a human cell line.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ADAM17, which is also known as TNF alpha-converting enzyme, is the major sheddase for the EGF receptor ligands and is considered to be one of the main proteases responsible for the ectodomain shedding of surface proteins. How a membrane-anchored proteinase with an extracellular catalytic domain can be activated by inside-out regulation is not completely understood. We characterized thioredoxin-1 (Trx-1) as a partner of the ADAM17 cytoplasmic domain that could be involved in the regulation of ADAM17 activity. We induced the overexpression of the ADAM17 cytoplasmic domain in HEK293 cells, and ligands able to bind this domain were identified by MS after protein immunoprecipitation. Trx-1 was also validated as a ligand of the ADAM17 cytoplasmic domain and full-length ADAM17 recombinant proteins by immunoblotting, immunolocalization, and solid phase binding assay. In addition, using nuclear magnetic resonance, it was shown in vitro that the titration of the ADAM17 cytoplasmic domain promotes changes in the conformation of Trx-1. The MS analysis of the cross-linked complexes showed cross-linking between the two proteins by lysine residues. To further evaluate the functional role of Trx-1, we used a heparin-binding EGF shedding cell model and observed that the overexpression of Trx-1 in HEK293 cells could decrease the activity of ADAM17, activated by either phorbol 12-myristate 13-acetate or EGF. This study identifies Trx-1 as a novel interaction partner of the ADAM17 cytoplasmic domain and suggests that Trx-1 is a potential candidate that could be involved in ADAM17 activity regulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

SERA5 is regarded as a promising malaria vaccine candidate of the most virulent human malaria parasite Plasmodium falciparum. SERA5 is a 120 kDa abundantly expressed blood-stage protein containing a papain-like protease. Since substantial polymorphism in blood-stage vaccine candidates may potentially limit their efficacy, it is imperative to fully investigate polymorphism of the SERA5 gene (sera5). In this study, we performed evolutionary and population genetic analysis of sera5. The level of inter-species divergence (kS = 0.076) between P. falciparum and Plasmodium reichenowi, a closely related chimpanzee malaria parasite is comparable to that of housekeeping protein genes. A signature of purifying selection was detected in the proenzyme and enzyme domains. Analysis of 445 near full-length P. falciparum sera5 sequences from nine countries in Africa, Southeast Asia, Oceania and South America revealed extensive variations in the number of octamer repeat (OR) and serine repeat (SR) regions as well as substantial level of single nucleotide polymorphism (SNP) in non-repeat regions (2562 bp). Remarkably, a 14 amino acid sequence of SERA5 (amino acids 59-72) that is known to be the in vitro target of parasite growth inhibitory antibodies was found to be perfectly conserved in all 445 worldwide isolates of P. falciparum evaluated. Unlike other major vaccine target antigen genes such as merozoite surface protein-1, apical membrane antigen-1 or circumsporozoite protein, no strong evidence for positive selection was detected for SNPs in the non-repeat regions of sera5. A biased geographical distribution was observed in SNPs as well as in the haplotypes of the sera5 OR and SR regions. In Africa, OR- and SR-haplotypes with low frequency (<5%) and SNPs with minor allele frequency (<5%) were abundant and were mostly continent-specific. Consistently, significant genetic differentiation, assessed by the Wright's fixation index (FST) of inter-population variance in allele frequencies, was detected for SNPs and both OR- and SR-haplotypes among almost all parasite populations. The exception was parasite populations between Tanzania and Ghana, suggesting frequent gene flow in Africa. The present study points to the importance of investigating whether biased geographical distribution for SNPs and repeat variants in the OR and SR regions affect the reactivity of human serum antibodies to variants. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) gamma to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPAR gamma ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8-C10) bind the PPAR gamma LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPAR gamma LBD, stronger partial agonists with full length PPAR gamma and exhibit full blockade of PPAR gamma phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPAR gamma also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/beta-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPAR gamma modulators with useful clinical profiles among natural products.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptors (PPARs) regulate genes involved in lipid and carbohydrate metabolism, and are targets of drugs approved for human use. Whereas the crystallographic structure of the complex of full length PPAR gamma and RXR alpha is known, structural alterations induced by heterodimer formation and DNA contacts are not well understood. Herein, we report a small-angle X-ray scattering analysis of the oligomeric state of hPPAR gamma alone and in the presence of retinoid X receptor (RXR). The results reveal that, in contrast with other studied nuclear receptors, which predominantly form dimers in solution, hPPAR gamma remains in the monomeric form by itself but forms heterodimers with hRXR alpha. The low-resolution models of hPPAR gamma/RXR alpha complexes predict significant changes in opening angle between heterodimerization partners (LBD) and extended and asymmetric shape of the dimer (LBD-DBD) as compared with X-ray structure of the full-length receptor bound to DNA. These differences between our SAXS models and the high-resolution crystallographic structure might suggest that there are different conformations of functional heterodimer complex in solution. Accordingly, hydrogen/deuterium exchange experiments reveal that the heterodimer binding to DNA promotes more compact and less solvent-accessible conformation of the receptor complex.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context: There is great interindividual variability in the response to recombinant human (rh) GH therapy in patients with Turner syndrome (TS). Ascertaining genetic factors can improve the accuracy of growth response predictions. Objective: The objective of the study was to assess the individual and combined influence of GHR-exon 3 and -202 A/C IGFBP3 polymorphisms on the short-and long-term outcomes of rhGH therapy in patients with TS. Design and Patients: GHR-exon 3 and -202 A/C IGFBP3 genotyping (rs2854744) was correlated with height data of 112 patients with TS who remained prepubertal during the first year of rhGH therapy and 65 patients who reached adult height after 5 +/- 2.5 yr of rhGH treatment. Main Outcome Measures: First-year growth velocity and adult height were measured. Results: Patients carrying at least one GHR-d3 or -202 A-IGFBP3 allele presented higher mean first-year growth velocity and achieved taller adult heights than those homozygous for GHR-fl or -202 C-IGFBP3 alleles, respectively. The combined analysis of GHR-exon 3 and -202 A/C IGFBP3 genotypes showed a clear nonadditive epistatic influence on adult height of patients with TS treated with rhGH (GHR-exon 3 alone, R-2 = 0.27; -202 A/C IGFBP3, R-2 = 0.24; the combined genotypes, R-2 = 0.37 at multiple linear regression). Together with clinical factors, these genotypes accounted for 61% of the variability in adult height of patients with TS after rhGH therapy. Conclusion: Homozygosity for the GHR-exon3 full-length allele and/or the -202C-IGFBP3 allele are associated with less favorable short-and long-term growth outcomes after rhGH treatment in patients with TS. (J Clin Endocrinol Metab 97: E671-E677, 2012)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Septins are a conserved group of GTP-binding proteins that form hetero-oligomeric complexes which assemble into filaments. These are essential for septin function, including their role in cytokinesis, cell division, exocytosis and membrane trafficking. Septin 2 (SEPT2) is a member of the septin family and has been associated with neurofibrillary tangles and other pathological features of senile plaques in Alzheimer's disease. An in silico analysis of the amino acid sequence of SEPT2 identified regions with a significant tendency to aggregate and/or form amyloid. These were all observed within the GTP-binding domain. This was consistent with the experimental identification of a structure rich in beta-sheet during temperature induced unfolding transitions observed for both the full length protein and the GTP-binding domain alone. This intermediate state is characterized by irreversible aggregation and has the ability to bind Thioflavin-T, suggesting its amyloid nature. Under electron microscopy, fibers extending for several micrometers in length could be visualized. The results shown in this study support the hypothesis that single septins, when present in excess or with unbalanced stoichiometries, may be unstable and assemble into amyloid-like structures. (C) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Background The CACTA (also called En/Spm) superfamily of DNA-only transposons contain the core sequence CACTA in their Terminal Inverted Repeats (TIRs) and so far have only been described in plants. Large transcriptome and genome sequence data have recently become publicly available for Schistosoma mansoni, a digenetic blood fluke that is a major causative agent of schistosomiasis in humans, and have provided a comprehensive repository for the discovery of novel genes and repetitive elements. Despite the extensive description of retroelements in S. mansoni, just a single DNA-only transposon belonging to the Merlin family has so far been reported in this organism. Results We describe a novel S. mansoni transposon named SmTRC1, for S. mansoni Transposon Related to CACTA 1, an element that shares several characteristics with plant CACTA transposons. Southern blotting indicates approximately 30–300 copies of SmTRC1 in the S. mansoni genome. Using genomic PCR followed by cloning and sequencing, we amplified and characterized a full-length and a truncated copy of this element. RT-PCR using S. mansoni mRNA followed by cloning and sequencing revealed several alternatively spliced transcripts of this transposon, resulting in distinct ORFs coding for different proteins. Interestingly, a survey of complete genomes from animals and fungi revealed several other novel TRC elements, indicating new families of DNA transposons belonging to the CACTA superfamily that have not previously been reported in these kingdoms. The first three bases in the S. mansoni TIR are CCC and they are identical to those in the TIRs of the insects Aedes aegypti and Tribolium castaneum, suggesting that animal TRCs may display a CCC core sequence. Conclusion The DNA-only transposable element SmTRC1 from S. mansoni exhibits various characteristics, such as generation of multiple alternatively-spliced transcripts, the presence of terminal inverted repeats at the extremities of the elements flanked by direct repeats and the presence of a Transposase_21 domain, that suggest a distant relationship to CACTA transposons from Magnoliophyta. Several sequences from other Metazoa and Fungi code for proteins similar to those encoded by SmTRC1, suggesting that such elements have a common ancestry, and indicating inheritance through vertical transmission before separation of the Eumetazoa, Fungi and Plants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Background Blastocladiella emersonii is an aquatic fungus of the Chytridiomycete class, which is at the base of the fungal phylogenetic tree. In this sense, some ancestral characteristics of fungi and animals or fungi and plants could have been retained in this aquatic fungus and lost in members of late-diverging fungal species. To identify in B. emersonii sequences associated with these ancestral characteristics two approaches were followed: (1) a large-scale comparative analysis between putative unigene sequences (uniseqs) from B. emersonii and three databases constructed ad hoc with fungal proteins, animal proteins and plant unigenes deposited in Genbank, and (2) a pairwise comparison between B. emersonii full-length cDNA sequences and their putative orthologues in the ascomycete Neurospora crassa and the basidiomycete Ustilago maydis. Results Comparative analyses of B. emersonii uniseqs with fungi, animal and plant databases through the two approaches mentioned above produced 166 B. emersonii sequences, which were identified as putatively absent from other fungi or not previously described. Through these approaches we found: (1) possible orthologues of genes previously identified as specific to animals and/or plants, and (2) genes conserved in fungi, but with a large difference in divergence rate in B. emersonii. Among these sequences, we observed cDNAs encoding enzymes from coenzyme B12-dependent propionyl-CoA pathway, a metabolic route not previously described in fungi, and validated their expression in Northern blots. Conclusion Using two different approaches involving comparative sequence analyses, we could identify sequences from the early-diverging fungus B. emersonii previously considered specific to animals or plants, and highly divergent sequences from the same fungus relative to other fungi.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Background: Schistosoma mansoni is a blood helminth parasite that causes schistosomiasis, a disease that affects 200 million people in the world. Many orthologs of known mammalian genes have been discovered in this parasite and evidence is accumulating that some of these genes encode proteins linked to signaling pathways in the parasite that appear to be involved with growth or development, suggesting a complex co-evolutionary process. Results: In this work we found 427 genes conserved in the Deuterostomia group that have orthologs in S. mansoni and no members in any nematodes and insects so far sequenced. Among these genes we have identified Insulin Induced Gene (INSIG), Interferon Regulatory Factor (IRF) and vasohibin orthologs, known to be involved in mammals in mevalonate metabolism, immune response and angiogenesis control, respectively. We have chosen these three genes for a more detailed characterization, which included extension of their cloned messages to obtain full-length sequences. Interestingly, SmINSIG showed a 10-fold higher expression in adult females as opposed to males, in accordance with its possible role in regulating egg production. SmIRF has a DNA binding domain, a tryptophan-rich N-terminal region and several predicted phosphorylation sites, usually important for IRF activity. Fourteen different alternatively spliced forms of the S. mansoni vasohibin (SmVASL) gene were detected that encode seven different protein isoforms including one with a complete C-terminal end, and other isoforms with shorter C-terminal portions. Using S. mansoni homologs, we have employed a parsimonious rationale to compute the total gene losses/gains in nematodes, arthropods and deuterostomes under either the Coelomata or the Ecdysozoa evolutionary hypotheses; our results show a lower losses/gains number under the latter hypothesis. Conclusion: The genes discussed which are conserved between S. mansoni and deuterostomes, probably have an ancient origin and were lost in Ecdysozoa, being still present in Lophotrochozoa. Given their known functions in Deuterostomia, it is possible that some of them have been co-opted to perform functions related (directly or indirectly) to host adaptation or interaction with host signaling processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Background Heterologous promoter analysis in Plasmodium has revealed the existence of conserved cis regulatory elements as promoters from different species can drive expression of reporter genes in heterologous transfection assays. Here, the functional characterization of different Plasmodium vivax promoters in Plasmodium falciparum using luciferase as the reporter gene is presented. Methods Luciferase reporter plasmids harboring the upstream regions of the msp1, dhfr, and vir3 genes as well as the full-length intergenic regions of the vir23/24 and ef-1α genes of P. vivax were constructed and transiently transfected in P. falciparum. Results Only the constructs with the full-length intergenic regions of the vir23/24 and ef-1α genes were recognized by the P. falciparum transcription machinery albeit to values approximately two orders of magnitude lower than those reported by luc plasmids harbouring promoter regions from P. falciparum and Plasmodium berghei. A bioinformatics approach allowed the identification of a motif (GCATAT) in the ef-1α intergenic region that is conserved in five Plasmodium species but is degenerate (GCANAN) in P. vivax. Mutations of this motif in the P. berghei ef-1α promoter region decreased reporter expression indicating it is active in gene expression in Plasmodium. Conclusion Together, this data indicates that promoter regions of P. vivax are poorly or not recognized by the P. falciparum transcription machinery suggesting the existence of P. vivax-specific transcription regulatory elements.