6 resultados para 670403 Treatments (e.g. chemicals, antibiotics)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR) and tortuosity (T) and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in Sao Carlos (Fazenda Canchim), in Sao Paulo State, Brazil. Experimental plots of 33 m(2) were treated with two tillage practices in three replications, consisting of: untilled (no-tillage) soil (NTS) and conventionally tilled (plowing plus double disking) soil (CTS). Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e. g., soil type, declivity, slope length, among others not analyzed in this study.
Resumo:
The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR) and tortuosity (T) and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim), in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage) soil (NTS) and conventionally tilled (plowing plus double disking) soil (CTS). Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.
Resumo:
There are currently many types of protective materials for reinforced concrete structures and the influence of these materials in the chloride diffusion coefficient and water penetration still needs more research. The aim of this work is to analyze the contributions regarding the typical three surface concrete protection systems (coatings, linings and pore blockers) and discusses the results of three pore blockers (sodium silicate) tested in this work. To this end, certain tests were used: one involving permeability mechanism (low pressure-immersion absorption), one involving capillary water absorption, and the last, a migration test used to estimate the effective chloride diffusion coefficient in saturated condition. Results indicated reduction in chloride diffusion coefficients and capillary water absorption, therefore, restrictions to water penetration from external environmental. As a consequence, a reduction of the corrosion kinetics and a control of the chloride ingress are expected.
Resumo:
In this study we compared the microleakage of conventional glass ionomer cement (GIC) restorations following the use of different methods of root caries removal. In vitro root caries were induced in 75 human root dentin samples that were divided in five groups of 15 each according to the method used for caries removal: in group 1 spherical carbide burs at low speed were used, in group 2 a hand-held excavator was used, and in groups 3 to 5 an Er,Cr:YSGG laser was used at 2.25 W, 40.18 J/cm(2) (group 3), 2.50 W, 44.64 J/cm(2) (group 4) and 2.75 W, 49.11 J/cm(2) (group 5). The air/water cooling during irradiation was set to 55%/65% respectively. All cavities were filled with GIC. Five samples from each group were evaluated by scanning electron microscopy (SEM) and the other ten samples were thermocycled and submitted to a microleakage test. The data obtained were compared by ANOVA followed by Fisher's test (pa parts per thousand currency sign0.05). Group 4 showed the lowest microleakage index (56.65 6.30; p < 0.05). There were no significant differences among the other groups. On SEM images samples of groups 1 and 2 showed a more regular interface than the irradiated samples. Demineralized dentin below the restoration was observed, that was probably affected dentin. Group 4 showed the lowest microleakage values compared to the other experimental groups, so under the conditions of the present study the method that provided the lowest microleakage was the Er,Cr:YSGG laser with a power output of 2.5 W yielding an energy density of 44.64 J/cm(2).
Resumo:
Cells of Candida guilliermondii (ATCC 201935) were permeabilised with surfactant treatment (CTAB or Triton X-100) or a freezing-thawing procedure. Treatments were monitored by in situ activities of the key enzymes involved in xylose metabolism, that is, glucose-6-phosphate dehydrogenase (G6PD), xylose reductase (XR) and xylitol dehydrogenase (XD). The permeabilising ability of the surfactants was dependent on its concentration and incubation time. The optimum operation conditions for the permeabilisation of C. guilliermondii with surfactants were 0.41 mM (CTAB) or 2.78 mM (Triton X-100), 30 degrees C, and pH 7 at 200 rpm for 50 min. The maximum permeabilisation measured in terms of the in situ G6PD activity observed was, in order, as follows: CTAB (122.4 +/- 15.7 U/g(cells)) > freezing-thawing, , (54.3 +/- 1.9 U/g(cells)) > Triton X-100 (23.5 +/- 0.0 U/g(cells)). These results suggest that CTAB surfactant is more effective in the permeabilisation of C. guilliermondii cells in comparison to the freezing-thawing and Triton X-100 treatments. Nevertheless, freezing-thawing was the only treatment that allowed measurable in situ XR activity. Therefore, freezing-thawing permeabilised yeast cells could be used as a source of xylose reductase for analytical purposes or for use in biotransformation process such as xylitol preparation from xylose. The level of in situ xylose reductase was found to be 13.2 +/- 0.1 U/g(cells).
Resumo:
Problem statement: The aim of the present study was to characterize and differentiate the effects of addition of flavomycin or monensin on ruminal fermentation and degradability as well as on total digestibility in bovine. Approach: Twelve non-pregnant and non-lactating cows (736 kg of BW) were randomly assigned to three treatments: control, flavomycin (20 mg animal-1 day-1) and monensin (300 mg animal-1 day-1). The trial lasted 21 days. The last 10 days were used for external marker administration (15 g of chromic oxide animal-1 day-1). The last 5 days of the trial were used for feces collection and evaluation of corn grain, soybean meal or sugarcane ruminal degradability and the 21st day was used for ruminal fluid sampling. Results: Monensin increased 27.2%, on average, propionate molar proportion at 0, 4, 6, 8, 10 and 12 h after feeding, compared to control and flavomycin groups. When compared to control, flavomycin reduced the degradation rate of soybean meal CP in 31.0%, decreasing the effective degradability when passage rates of 5 and 8% h-1 were used. Dry matter intake, pH, total Short Chain Fatty Acids (tSCFA) or ammoniacal Nitrogen (NH3-N) concentration were not influenced by the addition of either antibiotics. Effective degradability of sugarcane NDF was not influenced by the use of either antibiotic; neither were the TDN nor the digestibility of DM, CP, EE, NFE, ADF, NDF, GE or starch of the diet. Conclusion/Recommendations: In the present study, it was possible to show the beneficial effects of monensin but not of flavomycin, on rumen fermentation