2 resultados para 53-418B

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we analyze the long term variability of rainfall and temperature (1912-2008) of Santa Maria (29 degrees S, 53 degrees W) and its possible connection with natural influences such as solar activity and ENSO. Temperature and rainfall present similar frequencies as revealed by spectral analyses. This analysis shows a large number of short periods between 2-8 years and periods of 11.8-12.3, 19.1-21.0, and 64.3-82.5 years. The cross correlation for rainfall and temperature versus Southern Oscillation Index (SOI) have higher cross-power around 2-8 yr. Rainfall and temperature versus sunspot number (Rz) showed higher cross-power around the 11-yr solar cycle period. A high and continuous cross correlation was observed for Rz-22 yr versus rainfall and temperature. Furthermore, the power between 22-yr solar cycle and meteorological parameters was higher than that obtained with the 11-yr solar cycle, suggesting that the effect of Hale cycle on climate may be stronger than the Schwabe cycle effect. These results indicate that the variability of rainfall and temperature is closely related to the variation of the Southern Oscillation Index and solar activity, and that the El Nino Southern Oscillation and solar activity probably play an important role in the climate system over Southern Brazil. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the energy and frequency dependence of the Fourier time lags and intrinsic coherence of the kilohertz quasi-periodic oscillations (kHz QPOs) in the neutron-star lowmass X-ray binaries 4U 1608−52 and 4U 1636−53, using a large data set obtained with the Rossi X-ray Timing Explorer. We confirmed that, in both sources, the time lags of the lower kHz QPO are soft and their magnitude increases with energy. We also found that: (i) In 4U 1636−53, the soft lags of the lower kHz QPO remain constant at∼30 μs in the QPO frequency range 500–850 Hz, and decrease to ∼10 μs when the QPO frequency increases further. In 4U 1608−52, the soft lags of the lower kHz QPO remain constant at 40 μs up to 800 Hz, the highest frequency reached by this QPO in our data. (ii) In both sources, the time lags of the upper kHz QPO are hard, independent of energy or frequency and inconsistent with the soft lags of the lower kHz QPO. (iii) In both sources the intrinsic coherence of the lower kHz QPO remains constant at ∼0.6 between 5 and 12 keV, and drops to zero above that energy. The intrinsic coherence of the upper kHz QPO is consistent with being zero across the full energy range. (iv) In 4U 1636−53, the intrinsic coherence of the lower kHz QPO increases from ∼0 at ∼600 Hz to ∼1, and it decreases to ∼0.5 at 920 Hz; in 4U 1608−52, the intrinsic coherence is consistent with the same trend. (v) In both sources the intrinsic coherence of the upper kHz QPO is consistent with zero over the full frequency range of the QPO, except in 4U 1636−53 between 700 and 900 Hz where the intrinsic coherence marginally increases. We discuss our results in the context of scenarios in which the soft lags are either due to reflection off the accretion disc or up-/down-scattering in a hot medium close to the neutron star. We finally explore the connection between, on one hand the time lags and the intrinsic coherence of the kHz QPOs, and on the other the QPOs’ amplitude and quality factor in these two sources.