28 resultados para 5-HT1A RECEPTORS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systemic administration of cannabidiol (CBD) attenuates cardiovascular and behavioral changes induced by re-exposure to a context that had been previously paired with footshocks. Previous results from our group using cFos immunohistochemistry suggested that the bed nucleus of the stria terminalis (BNST) is involved in this effect. The mechanisms of CBD effects are still poorly understood, but could involve 5-HT1A receptor activation. Thus, the present work investigated if CBD administration into the BNST would attenuate the expression of contextual fear conditioning and if this effect would involve the activation of 5-HT1A receptors. Male Wistar rats with cannulae bilaterally implanted into the BNST were submitted to a 10 min conditioning session (six footshocks, 1.5 mA/3 s). Twenty-four hours later freezing and cardiovascular responses (mean arterial pressure and heart rate) to the conditioning box were measured for 10 min. CBD (15, 30 or 60 nmol) or vehicle was administered 10 min before the re-exposure to the aversive context. The second experiment was similar to the first one except that animals received microinjections of the 5-HT1A receptor antagonist WAY100635 (0.37 nmol) 5 min before CBD (30 nmol) treatment. The results showed that CBD (30 and 60 nmol) treatment significantly reduced the freezing and attenuated the cardiovascular responses induced by re-exposure to the aversive context. Moreover, WAY100635 by itself did not change the cardiovascular and behavioral response to context, but blocked the CBD effects. These results suggest that CBD can act in the BNST to attenuate aversive conditioning responses and this effect seems to involve 5-HT1A receptor-mediated neurotransmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background The current treatments for anxiety disorders and depression have multiple adverse effects in addition to a delayed onset of action, which has prompted efforts to find new substances with potential activity in these disorders. Citrus aurantium was chosen based on ethnopharmacological data because traditional medicine refers to the Citrus genus as useful in diminishing the symptoms of anxiety or insomnia, and C. aurantium has more recently been proposed as an adjuvant for antidepressants. In the present work, we investigated the biological activity underlying the anxiolytic and antidepressant effects of C. aurantium essential oil (EO), the putative mechanism of the anxiolytic-like effect, and the neurochemical changes in specific brain structures of mice after acute treatment. We also monitored the mice for possible signs of toxicity after a 14-day treatment. Methods The anxiolytic-like activity of the EO was investigated in a light/dark box, and the antidepressant activity was investigated in a forced swim test. Flumazenil, a competitive antagonist of benzodiazepine binding, and the selective 5-HT1A receptor antagonist WAY100635 were used in the experimental procedures to determine the mechanism of action of the EO. To exclude false positive results due to motor impairment, the mice were submitted to the rotarod test. Results The data suggest that the anxiolytic-like activity observed in the light/dark box procedure after acute (5 mg/kg) or 14-day repeated (1 mg/kg/day) dosing was mediated by the serotonergic system (5-HT1A receptors). Acute treatment with the EO showed no activity in the forced swim test, which is sensitive to antidepressants. A neurochemical evaluation showed no alterations in neurotransmitter levels in the cortex, the striatum, the pons, and the hypothalamus. Furthermore, no locomotor impairment or signs of toxicity or biochemical changes, except a reduction in cholesterol levels, were observed after treatment with the EO. Conclusion This work contributes to a better understanding of the biological activity of C. aurantium EO by characterizing the mechanism of action underlying its anxiolytic-like activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The medial amygdaloid nucleus (MeA) is a sub-region of the amygdaloid complex that has been described as participating in food intake regulation. Serotonin has been known to play an important role in appetite and food intake regulation. Moreover, serotonin 5-HT2C and 5-HT1A receptors appear to be critical in food intake regulation. We investigated the role of the serotoninergic system in the MeA on feeding behavior regulation in rats. The current study examined the effects on feeding behavior regulation of the serotonin reuptake inhibitor, zimelidine, administered directly into the MeA or given systemically, and the serotoninergic receptors mediating its effect. Our results showed that microinjection of zimelidine (0.2, 2 and 20 nmol/100 nL) into the MeA evoked dose dependent hypophagic effects in fasted rats. The selective 5-HT1A receptor antagonist WAY-100635 (18.5 nmol/100 nL) or the 5-HT1B receptor antagonist SB-216641 microinjected bilaterally into the MeA did not change the hypophagic effect evoked by local MeA zimelidine treatment. However, microinjection of the selective 5-HT2C receptor antagonist SB-242084 (10 nmol/100 nL) was able to block the hypophagic effect of zimelidine. Moreover, microinjection of the 5-HT2C receptor antagonist SB-242084 into the MeA also blocked the hypophagic effect caused by zimelidine administered systemically. These results suggest that MeA 5-HT2C receptors modulate the hypophagic effect caused by local MeA administration as well as by systemic zimelidine administration. Furthermore, 5-HT2C into the MeA could be a potential target for systemic administration of zimelidine. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several findings have pointed to the role of the dorsal periaqueductal gray (dPAG) serotonin 5-HT1A and 5-HT2(A-C) receptor subtypes in the modulation of defensive behavior in animals exposed to the elevated plus-maze (EPM). Besides displaying anxiety-like behavior, rodents also exhibit antinociception in the EPM. This study investigated the effects of intra-dPAG injections of 5-HT1A and 5-HT2B/2C receptor ligands on EPM-induced antinociception in mice. Male Swiss mice received 0.1 mu l intra-dPAG injections of vehicle, 5.6 and 10 nmol of 8-OHDPAT, a 5-HT1A receptor agonist (Experiment 1), or 0.01, 0.03 and 0.1 nmol of mCPP, a 5-HT2B/2C receptor agonist (Experiment 2). Five minutes later, each mouse received an intraperitoneal injection of 0.6% acetic acid (0.1 ml/10 g body weight; nociceptive stimulus) and was individually confined in the open (OA) or enclosed (EA) arms of the EPM for 5 min, during which the number of abdominal writhes induced by the acetic acid was recorded. While intra-dPAG injection of 8-OHDPAT did not change open-arm antinociception (OAR). mCPP (0.01 nmol) enhanced it. Combined injections of ketanserin (10 nmol/0.1 mu l), a 5-HT2A/2C receptor antagonist, and 0.01 nmol of mCPP (Experiment 3), selectively and completely blocked the OAR enhancement induced by mCPP. Although intra-dPAG injection of mCPP (0.01 nmol) also produced antinociception in EA-confined mice (Experiment 2), this effect was not confirmed in Experiment 3. Moreover, no other compound changed the nociceptive response in EA-confined animals. These results suggest that the 5-HT2C receptors located within the PAG play a role in this type of environmentally induced pain inhibition in mice. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Posttraumatic stress disorder (PTSD) is an incapacitating syndrome that follows a traumatic experience. Predator exposure promotes long-lasting anxiogenic effect in rodents, an effect related to symptoms found in PTSD patients. Cannabidiol (CBD) is a non-psychotomimetic component of Cannabis sativa with anxiolytic effects. The present study investigated the anti-anxiety actions of CBD administration in a model of PTSD. Male Wistar rats exposed to a predator (cat) received, 1 h later, singled or repeated i.p. administration of vehicle or CBD. Seven days after the stress animals were submitted to the elevated plus maze. To investigate the involvement of 5HT1A receptors in CBD effects animals were pre-treated with WAY100635, a 5HT1A receptor antagonist. To explore possible neurobiological mechanisms involved in these effects, 5HT1A receptor mRNA and BDNF protein expression were measured in the hippocampus, frontal cortex, amygdaloid complex and dorsal periaqueductal gray. Repeated administration of CBD prevented long-lasting anxiogenic effects promoted by a single predator exposure. Pretreatment with WAY100635 attenuated CBD effects. Seven days after predator exposure 5HT1A mRNA expression was up regulated in the frontal cortex and hippocampus. CBD and paroxetine failed to prevent this effect. No change in BDNF expression was found. In conclusion, predator exposure promotes long-lasting up-regulation of 5HT1A receptor gene expression in the hippocampus and frontal cortex. Repeated CBD administration prevents the long-lasting anxiogenic effects observed after predator exposure probably by facilitating 5HT1A receptors neurotransmission. Our results suggest that CBD has beneficial potential for PTSD treatment and that 5HT1A receptors could be a therapeutic target in this disorder. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent evidence has suggested that systemic administration of non-selective NOS inhibitors induces antidepressant-like effects in animal models. However, the precise involvement of the different NOS isoforms (neuronal-nNOS and inducible-iNOS) in these effects has not been clearly defined yet. Considering that mediators of the inflammatory response, that are able to induce iNOS expression, can be increased by exposure to stress, the aim of the present study was to investigate iNOS involvement in stress-induced behavioral consequences in the forced swimming test (FST), an animal model sensitive to antidepressant drugs. Therefore, we investigated the effects induced by systemic injection of aminoguanidine (preferential iNOS inhibitor), 1400W (selective iNOS inhibitor) or n-propyl-L-arginine (NPA, selective nNOS inhibitor) in mice submitted to the FST. We also investigated the behavior of mice with genetic deletion of iNOS (knockout) submitted to the FST. Aminoguanidine significantly decreased the immobility time (IT) in the FST. 1400W but not NPA, when administered at equivalent doses considering the magnitude of their Ki values for iNOS and nNOS, respectively, reduced the IT, thus suggesting that aminoguanidine-induced effects would be due to selective iNOS inhibition. Similarly, iNOS KO presented decreased IT in the FST when compared to wild-type mice. These results are the first to show that selective inhibition of iNOS or its knockdown induces antidepressant-like effects, therefore suggesting that iNOS-mediated NO synthesis is involved in the modulation of stress-induced behavioral consequences. Moreover, they further support NO involvement in the neurobiology of depression. This article is part of a Special Issue entitled 'Anxiety and Depression'. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The search for reconsolidation blockers may uncover clinically relevant drugs for disrupting memories of significant stressful life experiences, such as those underlying the posttraumatic stress disorder. Considering the safety of systemically administered cannabidiol (CBD), the major non-psychotomimetic component of Cannabis sativa, to animals and humans, the present study sought to investigate whether and how this phytocannabinoid (3-30 mg/kg intraperitoneally; i.p.) could mitigate an established memory, by blockade of its reconsolidation, evaluated in a contextual fear-conditioning paradigm in rats. We report that CBD is able to disrupt 1- and 7-days-old memories when administered immediately, but not 6 h, after their retrieval for 3 min, with the dose of 10 mg/kg being the most effective. This effect persists in either case for at least 1 week, but is prevented when memory reactivation was omitted, or when the cannabinoid type-1 receptors were antagonized selectively with AM251 (1.0 mg/kg). Pretreatment with the serotonin type-1A receptor antagonist WAY100635, however, failed to block CBD effects. These results highlight that recent and older fear memories are equally vulnerable to disruption induced by CBD through reconsolidation blockade, with a consequent long-lasting relief in contextual fear-induced freezing. Importantly, this CBD effect is dependent on memory reactivation, restricted to time window of <6h, and is possibly dependent on cannabinoid type-1 receptor-mediated signaling mechanisms. We also observed that the fear memories disrupted by CBD treatment do not show reinstatement or spontaneous recovery over 22 days. These findings support the view that reconsolidation blockade, rather than facilitated extinction, accounts for the aforementioned CBD results in our experimental conditions. Neuropsychopharmacology (2012) 37, 2132-2142; doi:10.1038/npp.2012.63; published online 2 May 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in brain-derived neurotrophic factor (BDNF)mediated signaling in the hippocampus have been implicated in the etiology of depression and in the mode of action of antidepressant drugs. There is also evidence from animal studies to suggest that BDNF-induced changes in the hippocampus may play a role in another stress-related pathology: anxiety. However, it is still unknown whether this neurotrophin plays a differential role in defensive responses associated with distinguished subtypes of anxiety disorders found in the clinic, such as generalized anxiety and panic disorder. In the present study, we investigated the effect of an acute BDNF injection into the rat dorsal hippocampus (DH) on inhibitory avoidance acquisition and escape expression measured in the elevated T-maze (ETM). We also assessed whether serotonergic neurotransmission may account for such effects. Intra-DH BDNF injection (200 pg) facilitated inhibitory avoidance in ETM. BDNF was equally anxiogenic in the light/dark transition test. Preadministration of the 5-HT1A receptor antagonist WAY-100635 fully counteracted the anxiogenic effect of BDNF in both tests. Intra-DH midazolam administration (10 nmol) impaired avoidance acquisition in ETM, suggesting an anxiolytic effect. Therefore, in the DH, facilitation of BDNF signaling seems to enhance 5-HT1A receptor-mediated neurotransmission to exert an anxiogenic effect associated with generalized anxiety. Behavioural Pharmacology 23:80-88 (C) 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several pharmacological targets have been proposed as modulators of panic-like reactions. However, interest should be given to other potential therapeutic neurochemical agents. Recent attention has been given to the potential anxiolytic properties of cannabidiol, because of its complex actions on the endocannabinoid system together with its effects on other neurotransmitter systems. The aim of this study was to investigate the effects of cannabidiol on innate fear-related behaviors evoked by a prey vs predator paradigm. Male Swiss mice were submitted to habituation in an arena containing a burrow and subsequently pre-treated with intraperitoneal administrations of vehicle or cannabidiol. A constrictor snake was placed inside the arena, and defensive and non-defensive behaviors were recorded. Cannabidiol caused a clear anti-aversive effect, decreasing explosive escape and defensive immobility behaviors outside and inside the burrow. These results show that cannabidiol modulates defensive behaviors evoked by the presence of threatening stimuli, even in a potentially safe environment following a fear response, suggesting a panicolytic effect. Neuropsychopharmacology (2012) 37, 412-421; doi:10.1038/npp.2011.188; published online 14 September 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To review and describe studies of the non-psychotomimetic constituent of Cannabis sativa, cannabidiol (CBD), as an anxiolytic drug and discuss its possible mechanisms of action. Method: The articles selected for the review were identified through searches in English,articles, and book chapters were handsearched for additional references. Experimental animal and human studies were included, with no time restraints. Results: Studies using animal models of anxiety and involving healthy volunteers clearly suggest an anxiolytic-like effect of CBD. like", and "cannabidiol and anxiety". The reference lists of the publications included, review Portuguese, and Spanish in the electronic databases ISI Web of Knowledge, SciELO, PubMed, and PsycINFO, combining the search terms "cannabidiol and anxiolytic", "cannabidiol and anxiolytic-articles, and book chapters were handsearched for additional references. Experimental animal and human studies were included, with no time restraints. Results: Studies using animal models of anxiety and involving healthy volunteers clearly suggest an anxiolytic-like effect of CBD. Moreover, CBD was shown to reduce anxiety in patients with social anxiety disorder. Conclusion: like", and "cannabidiol and anxiety". The reference lists of the publications included, review Future clinical trials involving patients with different anxiety disorders are warranted, especially of panic disorder, obsessive-compulsive disorder, social anxiety disorder, and post-traumatic stress disorders. The adequate therapeutic window of CBD and the precise mechanisms involved in its anxiolytic action remain to be determined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: There is accumulating evidence that the limbic system is pathologically involved in cases of psychiatric comorbidities in temporal lobe epilepsy (TLE) patients. Our objective was to develop a conceptual framework describing how neuropathological, neurochemical and electrophysiological aspects might contribute to the development of psychiatric symptoms in TLE and the putative neurobiological mechanisms that cause mood disorders in this patient subgroup. Methods: In this review, clinical, experimental and neuropathological findings, as well as neurochemical features of the limbic system were examined together to enhance our understanding of the association between TLE and psychiatric comorbidities. Finally, the value of animal models in epilepsy and mood disorders was discussed. Conclusions: TLE and psychiatric symptoms coexist more frequently than chance would predict. Alterations and neurotransmission disturbance among critical anatomical networks, and impaired or aberrant plastic changes might predispose patients with TLE to mood disorders. Clinical and experimental studies of the effects of seizures on behavior and electrophysiological patterns may offer a model of how limbic seizures increase the vulnerability of TLE patients to precipitants of psychiatric symptoms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tonic immobility (TI) is an innate defensive behavior that can be elicited by physical restriction and postural inversion and is characterized by a profound and temporary state of akinesis. Our previous studies demonstrated that the stimulation of serotonin receptors in the dorsal raphe nucleus (DRN) appears to be biphasic during TI responses in guinea pigs (Cavia porcellus). Serotonin released by the DRN modulates behavioral responses and its release can occur through the action of different neurotransmitter systems, including the opioidergic and GABAergic systems. This study examines the role of opioidergic, GABAergic and serotonergic signaling in the DRN in TI defensive behavioral responses in guinea pigs. Microinjection of morphine (1.1 nmol) or bicuculline (0.5 nmol) into the DRN increased the duration of TI. The effect of morphine (1.1 nmol) was antagonized by pretreatment with naloxone (0.7 nmol), suggesting that the activation of pi opioid receptors in the DRN facilitates the TI response. By contrast, microinjection of muscimol (0.5 nmol) into the DRN decreased the duration of TI. However, a dose of muscimol (0.26 nmol) that alone did not affect TI, was sufficient to inhibit the effect of morphine (1.1 nmol) on TI, indicating that GABAergic and enkephalinergic neurons interact in the DRN. Microinjection of alpha-methyl-5-HT (1.6 nmol), a 5-HT2 agonist, into the DRN also increased TI. This effect was inhibited by the prior administration of naloxone (0.7 nmol). Microinjection of 8-OH-DPAT (1.3 nmol) also blocked the increase of TI promoted by morphine (1.1 nmol). Our results indicate that the opioidergic, GABAergic and serotonergic systems in the DRN are important for modulation of defensive behavioral responses of TI. Therefore, we suggest that opioid inhibition of GABAergic neurons results in disinhibition of serotonergic neurons and this is the mechanism by which opioids could enhance TI. Conversely, a decrease in TI could occur through the activation of GABAergic interneurons. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective. The aim of this study was to investigate the local and systemic expression of CC-chemokine ligand 3 (CCL3) and its receptors (CCR1 and CCR5) in tissue samples and peripheral blood mononuclear cells of recurrent aphthous stomatitis (RAS) patients. Study Design. This case-control study enrolled 29 patients presenting severe RAS manifestations and 20 non-RAS patients proportionally matched by sex and age. Total RNA was extracted from biopsy specimens and peripheral blood mononuclear cells for quatitative reverse-transcription polymerase chain reaction. The data obtained by relative quantification were evaluated by the 2(-Delta Delta Ct) method, normalized by the expression of an endogenous control, and analyzed by Student t test. Results. The results demonstrated overexpression in RAS tissue samples of all of the chemokines evaluated compared with healthy oral mucosa, whereas the blood samples showed only CCR1 overexpression in RAS patients. Conclusions. These findings suggest that the increased expression of CCL3, CCR1, and CCR5 may influence the immune response in RAS by T(H)1 cytokine polarization. (Oral Surg Oral Med Oral Pathol Oral Radiol 2012;114:93-98)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because GABA(A) receptors containing alpha 2 subunits are highly represented in areas of the brain, such as nucleus accumbens (NAcc), frontal cortex, and amygdala, regions intimately involved in signaling motivation and reward, we hypothesized that manipulations of this receptor subtype would influence processing of rewards. Voltage-clamp recordings from NAcc medium spiny neurons of mice with alpha 2 gene deletion showed reduced synaptic GABA(A) receptor-mediated responses. Behaviorally, the deletion abolished cocaine`s ability to potentiate behaviors conditioned to rewards (conditioned reinforcement), and to support behavioral sensitization. In mice with a point mutation in the benzodiazepine binding pocket of alpha 2-GABA(A) receptors (alpha 2H101R), GABAergic neurotransmission in medium spiny neurons was identical to that of WT (i.e., the mutation was silent), but importantly, receptor function was now facilitated by the atypical benzodiazepine Ro 15-4513 (ethyl 8-amido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo [1,5-a] [1,4] benzodiazepine-3-carboxylate). In alpha 2H101R, but not WT mice, Ro 15-4513 administered directly into the NAcc-stimulated locomotor activity, and when given systemically and repeatedly, induced behavioral sensitization. These data indicate that activation of alpha 2-GABA(A) receptors (most likely in NAcc) is both necessary and sufficient for behavioral sensitization. Consistent with a role of these receptors in addiction, we found specific markers and haplotypes of the GABRA2 gene to be associated with human cocaine addiction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To investigate the effect of the opioid blocker naltrexone in the inflammatory response in acute pancreatitis (AP). METHODS: Acute pancreatitis was induced in anesthetized male Wistar rats by retrograde injection of 2.5% sodium taurocholate diluted in 0.5ml saline into the main pancreatic duct. Animals were randomized to the following experimental groups: Control Group (n=9): animals received an intraperitoneal injection of saline solution (0.5ml), 15 minutes before the induction of AP. Naltrexone Group (n=9): animals received an intraperitoneal injection of naltrexone 0.5ml (15 mg/kg), 15 minutes before induction of AP. Peritoneal levels of TNF-alpha and serum levels of IL-6 and amylase were determined The volume of the ascitic fluid was also evaluated. Myeloperoxidase (MPO) activities were analyzed in homogenates of pulmonary tissue. RESULTS: There were no significant differences in the ascitic fluid volume, nor in TNF-alpha and IL-6 levels in the naltrexone group compared to controls. Treatment with naltrexone did not affect the lung MPO activity compared to control group. CONCLUSIONS: The opioid receptors don't play an important role in the pathogenesis of the inflammatory response in acute pancreatitis. If opioids affect leukocytes inflammatory signaling, there are no major implications in the pathogenesis of acute pancreatitis.