13 resultados para 4 phenylbutyric acid

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Factor H (FH) is one of the most important regulatory proteins of the alternative pathway of the complement system. Patients with FH deficiency have a higher risk for development of infections and kidney diseases because of the uncontrolled activation and subsequent depletion of the central regulatory component C3 of the complement system. In this study, we investigated the consequences of the Arg(127)His mutation in FH (FHR127H) previously described in an FH-deficient patient, on the secretion of this protein by skin fibroblasts in vitro. We observed that, although the patient cells stimulated with IFN-gamma were able to synthesize FHR127H, the mutant protein was largely retained within the endoplasmic reticulum (ER), whereas normal human fibroblasts stimulated with IFN-gamma secrete FH without retention in the ER. Moreover, the retention of FHR127H provoked enlargement of ER cisterns after treatment with IFN-gamma. A similar ER retention was observed in Cos-7 cells expressing the mutant FHR127H protein. Despite this deficiency in secretion, we show that the FHR127H mutant is capable of functioning as a cofactor in the Factor I-mediated cleavage of C3. We then evaluated whether a treatment could increase the secretion of FH, and observed that the patient's fibroblasts treated with the chemical chaperones 4-phenylbutiric acid or curcumin increased the secretion rate of FH. We propose that these chemical chaperones could be used as alternative therapeutic agents to increase FH plasma levels in FH-deficient patients caused by secretion delay of this regulatory protein. The Journal of Immunology, 2012, 189: 3242-3248.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A highly concentrated aqueous saline-containing solution of phenol, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2.4-DCP) was treated by the photo-Fenton process in a system composed of an annular reactor with a quartz immersion well and a medium-pressure mercury lamp (450 W). The study was conducted under special conditions to minimize the costs of acidification and neutralization, which are usual steps in this type of process. Photochemical reactions were carried out to investigate the influence of some process variables such as the initial concentration of Fe2+ ([Fe2+](0)) from 1.0 up to 2.5 mM, the rate in mmol of H2O2 fed into the system (F-H2O2,F-in) from 3.67 up to 7.33 mmol of H2O2/min during 120 min of reaction time, and the initial pH (pH(0)) from 3.0 up to 9.0 in the presence and absence of NaCl (60.0 g/L). Although the optimum pH for the photo-Fenton process is about 3.0, this particular system performed well in experimental conditions starting at alkaline and neutral pH. The results obtained here are promising for industrial applications, particularly in view of the high concentration of chloride, a known hydroxyl radical scavenger and the main oxidant present in photo-Fenton processes. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OSCILLATORY DYNAMICS IN SYSTEMS CONTAINING BROMATE AND 1,4-CYCLOHEXANEDIONE IN ACIDIC MEDIA. I. THE EFFECT OF TEMPERATURE. We present in this work the influence of temperature on the dynamics of homogeneous chemical systems containing bromate and 1,4-cyclohexanedione (1,4-CHD) in acidic media. In particular, the following systems were studied: bromate/1,4-CHD/acid, bromate/1,4-CHD/ferroin/acid and bromate/1,4-CHD/trisbipyridine ruthenium/acid. Investigations were carried out by means of an electrochemical probe, at five temperatures between 5 and 45 degrees C. Activation energies (E-a) were estimated in different ways for the pre-oscillatory and oscillatory regimes. In any case, the E-a was found to depend on the catalyst, composition and initial concentrations. In addition, it was observed that ferroin and trisbipyridine ruthenium act as catalysts only during the transition between the induction period and oscillatory regime.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present in this work the influence of temperature on the dynamics of homogeneous chemical systems containing bromate and 1,4-cyclohexanedione (1,4-CHD) in acidic media. In particular, the following systems were studied: bromate/1,4-CHD/acid, bromate/1,4-CHD/ferroin/acid and bromate/1,4-CHD/trisbipyridine ruthenium/acid. Investigations were carried out by means of an electrochemical probe, at five temperatures between 5 and 45 °C. Activation energies (Ea) were estimated in different ways for the pre-oscillatory and oscillatory regimes. In any case, the Ea was found to depend on the catalyst, composition and initial concentrations. In addition, it was observed that ferroin and trisbipyridine ruthenium act as catalysts only during the transition between the induction period and oscillatory regime.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Extracts from Baccharis dracunculifolia leaves were obtained using the following solvents: supercritical carbon dioxide (SC-CO2), ethanol and methanol. Supercritical extraction was carried out at temperatures of 40, 50 and 60 degrees C and pressures of 20, 30 and 40 MPa. Four phenolic compounds were analysed in the extracts by high-performance liquid chromatography: 3,5-diprenyl-4-hydroxycinnamic acid (DHCA or artepillin C); 3-prenyl-4-hydroxycinnamic acid (PHCA); 4-hydroxycinnamic acid (p-coumaric acid) and 4-methoxy-3,5,7-trihydroxyflavone (kaempferide). The global extraction yields (X-0) obtained by the conventional methods with ethanol and methanol were higher than those obtained by SC-CO2. However on analysing the components of interest extracted at 60 degrees C and 40 MPa, the extraction yields of kaempferide, DHCA and PHCA were 156%, 98% and 64% higher, respectively, than in the ethanolic extracts. Only the p-coumaric acid extraction yield was better when extracted using the conventional method. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report changes in plasma arginine vasopressin (AVP) and oxytocin (OT) concentrations evoked by the microinjection of L-glutamate (L-glu) into the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus(PVN) of unanesthetized rats, as well as which local mechanisms are involved in their mediation. L-Glu microinjection (10 nmol/100 nl) into the SON increased the circulating levels of both AVP and OT. The AVP increases were blocked by local pretreatment with the selective non-N-methyl-D-aspartate (NMDA) receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) (2 nmol/100 nl), but it was not affected by pretreatment with the NMDA-receptor antagonist LY235959 (2 nmol/100 nl). The OT response to L-glu microinjection into the SON was blocked by local pretreatment with either NBQX or LY235959. Furthermore, the administration of either the non-NMDA receptor agonist (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrobromide (AMPA) (5 nmol/100 nl) or NMDA receptor agonist NMDA (5 nmol/100 nl) into the SON had no effect on OT baseline plasma levels, but when both agonists were microinjected together these levels were increased. L-Glu microinjection into the PVN did not change circulating levels of either AVP or OT. However, after local pretreatment with LY235959, the L-glu microinjection increased plasma levels of the hormones. The L-glu microinjection into the PVN after the local treatment with NBQX did not affect the circulating AVP and OT levels. Therefore, results suggest the AVP release from the SON is mediated by activation of non-NMDA glutamate receptors, whereas the OT release from this nucleus is mediated by an interaction of NMDA and non-NMDA receptors. The present study also suggests an inhibitory role for NMDA receptors in the PVN on the release of AVP and OT. (Endocrinology 153: 2323-2331, 2012)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alcoholism is a chronic disorder characterized by the appearance of a withdrawal syndrome following the abrupt cessation of alcohol intake that includes symptoms of physical and emotional disturbances, anxiety being the most prevalent symptom. In humans, it was shown that anxiety may increase the probability of relapse. In laboratory animals, however, the use of anxiety to predict alcohol preference has remained difficult. Excitatory amino acids as glutamate have been implicated in alcohol hangover and may be responsible for the seizures and anxiety observed during withdrawal. The dorsal periaqueductal gray (DPAG) is a midbrain region critical for the modulation/expression of anxiety- and fear-related behaviors and the propagation of seizures induced by alcohol withdrawal, the glutamate neurotransmission being one of the most affected. The present study was designed to evaluate whether low- (LA) and high-anxiety rats (HA), tested during the alcohol hangover phase, in which anxiety is the most prevalent symptom, are more sensitive to the reinforcing effects of alcohol when tested in a voluntary alcohol drinking procedure. Additionally, we were interested in investigating the main effects of reducing the excitatory tonus of the dorsal midbrain, after the blockade of the ionotropic glutamate receptors into the DPAG, on the voluntary alcohol intake of HA and LA motivated rats that were made previously experienced with the free operant response of alcohol drinking. For this purpose, we used local infusions of the N-metil D-Aspartato (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-kainate receptors antagonist DL-2-Amino-7-phosphonoheptanoic acid - DL-AP7 (10 nmol/0.2 mu l) and L-glutamic acid diethyl ester - GDEE (160 nmol/0.2 mu l) respectively. Alcohol intoxication was produced by 10 daily bolus intraperitonial (IP) injections of alcohol (2.0 g/kg). Peak-blood alcohol levels were determined by gas-chromatography analysis in order to assess blood-alcohol content. Unconditioned and conditioned anxiety-like behavior was assessed by the use of the fear-potentiated startle procedure (FPS). Data collected showed that anxiety and alcohol drinking in HA animals are positively correlated in animals that were made previously familiarized with the anxiolytic effects of alcohol. In addition, anxiety-like behavior induced during alcohol hangover seems to be an effect of changes in glutamatergic neurotransmission into DPAG possibly involving AMPA/kainate and NMDA receptors, among others. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Agriculture uses a huge variety and quantity of chemicals. If, on one hand, the goal is to increase productivity, on the other hand these products contaminate aquatic environments. Among these products, herbicides deserve greater attention in relation to contamination of aquatic environments due to their extensive use to weed control. This study was carried out because the effects of these molecules on aquatic microorganisms such as Escherichia coli, is still unclear. Using microdilution plate assays, Escherichia coli were exposed to various commercial formulations of herbicides widely used in Brazil. The herbicide paraquat was the only one able to prevent the growth of Escherichia coli and is characterized as bacteriostatic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study describes the isolation and structural determination of two amides, isolated for the first time: N,4-dihydroxy-N-(2'-hydroxyethyl)-benzamide (0.019%) and N, 4-dihydroxy-N-(2'-hydroxyethyl)-benzeneacetamide (0.023%). These amides, produced by the red macroalgae Bostrychia radicans, had their structures assigned by NMR spectral data and MS analyses. In addition, this chemical study led to the isolation of cholesterol, heptadecane, squalene, trans-phytol, neophytadiene, tetradecanoic and hexadecanoic acids, methyl hexadecanoate and methyl 9-octadecenoate, 4-(methoxymethyl)-phenol, 4-hydroxybenzaldehyde, methyl 4-hydroxybenzeneacetate, methyl 2-hydroxy-3-(4-hydroxyphenyl)-propanoate, hydroquinone, methyl 4-hydroxymandelate, methyl 4-hydroxybenzoate, 4-hydroxybenzeneacetic acid and (4-hydroxyphenyl)-oxo-acetaldehyde. This is the first report concerning these compounds in B. radicans, contributing by illustrating the chemical diversity within the Rhodomelaceae family.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The characterization of cellular changes that occur during somatic embryogenesis is essential for understanding the factors involved in the transition of somatic cells into embryogenically competent cells and determination of cells and/or tissues involved. The present study describes the anatomical and ultrastructural events that lead to the formation of somatic embryos in the model system of the wild passion fruit (Passiflora cincinnata). Mature zygotic embryos were inoculated in Murashige and Skoog induction media supplemented with 2,4-dichlorophenoxyacetic acid and 6-benzyladenine. Zygotic embryo explants at different development stages were collected and processed by conventional methods for studies using light, scanning, and transmission electron microscopy (TEM). Histochemical tests were used to examine the mobilization of reserves. The differentiation of the somatic embryos began in the abaxial side of the cotyledon region. Protuberances were formed from the meristematic proliferation of the epidermal and mesophyll cells. These cells had large nuclei, dense cytoplasm with a predominance of mitochondria, and a few reserve compounds. The protuberances extended throughout the abaxial surface of the cotyledons. The ongoing differentiation of peripheral cells of these structures led to the formation of proembryogenic zones, which, in turn, dedifferentiated into somatic embryos of multicellular origin. In the initial stages of embryogenesis, the epidermal and mesophyll cells showed starch grains and less lipids and protein reserves than the starting explant. These results provide detailed information on anatomical and ultrastructural changes involved in the acquisition of embryogenic competence and embryo differentiation that has been lacking so far in Passiflora.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives. To evaluate if the incorporation of antimicrobial compounds to chelating agents or the use of chelating agents with antimicrobial activity as 7% maleic acid and peracetic acid show similar disinfection ability in comparison to conventional irrigants as sodium hypochlorite or iodine potassium iodide against biofilms developed on dentin. Materials and methods. The total bio-volume of live cells, the ratio of live cells and the substratum coverage of dentin infected intra-orally and treated with the irrigant solutions: MTAD, Qmix, Smear Clear, 7% maleic acid, 2% iodine potassium iodide, 4% peracetic acid, 2.5% and 5.25% sodium hypochlorite was measured by using confocal microscopy and the live/dead technique. Five samples were used for each irrigant solution. Results. Several endodontic irrigants containing antimicrobials as clorhexidine (Qmix), cetrimide (Smear Clear), maleic acid, iodine compounds or antibiotics (MTAD) lacked an effective antibiofilm activity when the dentin was infected intra-orally. The irrigant solutions 4% peracetic acid and 2.5–5.25% sodium hypochlorite decrease significantly the number of live bacteria in biofilms, providing also cleaner dentin surfaces (p < 0.05). Conclusions. Several chelating agents containing antimicrobials could not remove nor kill significantly biofilms developed on intra-orally infected dentin, with the exception of sodium hypochlorite and 4% peracetic acid. Dissolution ability is mandatory for an appropriate eradication of biofilms attached to dentin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study describes the isolation and structural determination of two amides, isolated for the first time: N,4-dihydroxy-N-(2'-hydroxyethyl)-benzamide (0.019%) and N,4-dihydroxy-N-(2'-hydroxyethyl)-benzeneacetamide (0.023%). These amides, produced by the red macroalgae Bostrychia radicans, had their structures assigned by NMR spectral data and MS analyses. In addition, this chemical study led to the isolation of cholesterol, heptadecane, squalene, trans-phytol, neophytadiene, tetradecanoic and hexadecanoic acids, methyl hexadecanoate and methyl 9-octadecenoate, 4-(methoxymethyl)-phenol, 4-hydroxybenzaldehyde, methyl 4-hydroxybenzeneacetate, methyl 2-hydroxy-3-(4-hydroxyphenyl)-propanoate, hydroquinone, methyl 4-hydroxymandelate, methyl 4-hydroxybenzoate, 4-hydroxybenzeneacetic acid and (4-hydroxyphenyl)-oxo-acetaldehyde. This is the first report concerning these compounds in B. radicans, contributing by illustrating the chemical diversity within the Rhodomelaceae family.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthesis of a functionalized 1-oxo-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid has been performed in 10 steps from the readily available dimedone. Only three purifications by flash chromatography are required through the whole sequence. The key step is the reaction between a dimedone derivative and a chlorotetrolic ester, that gives a tetrasubstituted benzene ring (through a Diels-Alder/retro- Diels-Alder process) bearing the substituents in the suitable positions for further functionalization. (C) 2012 Elsevier Ltd. All rights reserved.