2 resultados para 347.77
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Rationale: NAVA is an assisted ventilatory mode that uses the electrical activity of the diaphragm (Edi) to trigger and cycle the ventilator, and to offer inspiratory assistance in proportion to patient effort. Since Edi varies from breath to breath, airway pressure and tidal volume also vary according to the patient's breathing pattern. Our objective was to compare the variability of NAVA with PSV in mechanically ventilated patients during the weaning phase. Methods: We analyzed the data collected for a clinical trial that compares PSV and NAVA during spontaneous breathing trials using PSV, with PS of 5 cmH2O, and NAVA, with Nava level titrated to generate a peak airway pressure equivalent to PSV of 5 cmH2O (NCT01137271). We captured flow, airway pressure and Edi at 100Hz from the ventilator using a dedicated software (Servo Tracker v2, Maquet, Sweden), and processed the cycles using a MatLab (Mathworks, USA) code. The code automatically detects the tidal volume (Vt), respiratory rate (RR), Edi and Airway pressure (Paw) on a breath-by-breath basis for each ventilatory mode. We also calculated the coefficient of variation (standard deviation, SD, divided by the mean). Results: We analyzed data from eleven patients. The mean Vt was similar on both modes (370 ±70 for Nava and 347± 77 for PSV), the RR was 26±6 for Nava and 26±7 or PSV. Paw was higher for Nava than for PSV (14±1 vs 11±0.4, p=0.0033), and Edi was similar for both modes (12±8 for Nava and 11±6 for PSV). The variability of the respiratory pattern, assessed with the coefficient of variation, was larger for Nava than for PSV for the Vt ( 23%±1% vs 15%±1%, p=0.03) and Paw (17%±1% vs 1% ±0.1%, p=0.0033), but not for RR (21% ±1% vs 16% ±8%, p=0.050) or Edi (33%±14% vs 39% ±16%,p=0.07). Conclusion: The variability of the breathing pattern is high during spontaneous breathing trials independent of the ventilatory mode. This variability results in variability of airway pressure and tidal volume, which are higher on Nava than on PSV. Our results suggest that Nava better reflects the normal variability of the breathing pattern during assisted mechanical ventilation.
Resumo:
The freshwater copepod Odontodiaptomus thomseni (Brehm, 1933) (Calanoida: Diaptomidae) is a rare species that has been reported only once - in its original description (BREHM 1933). The lack of subsequent records led to its inclusion in the Red List of threatened species (IUCN). Here we present a new record for O.thomseni. It was discovered in Salto Grande reservoir, which is located in the lower stretches of the Uruguay River, between Uruguay and Argentina, at the River Plate basin. In January 2010, three specimens (two males and one female) were found, and these were studied in detail using scanning electron microscopy (SEM). We only had material of Odontodiaptomus paulistanus (Wright, 1936) for comparison, but the position of the lateral spine in right P5 of the male, and the shape and size of lateral wings of the female are especially distinctive. Odontodiaptomus thomseni remains a rare species and we recommend keeping it on the IUCN Red List.