2 resultados para 306.46

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to determine the coinfection of Leishmania sp. with Toxoplasma gondii, Feline Immunodeficiency Virus (FIV) and Feline Leukemia Virus (FeLV) in a population of cats from an endemic area for zoonotic visceral leishmaniasis. An overall 66/302 (21.85%) cats were found positive for Leishmania sp., with infection determined by direct parasitological examination in 30/302(9.93%), by serology in 46/302(15.23%) and by both in 10/302 (3.31%) cats. Real time PCR followed by amplicon sequencing successfully confirmed Leishmania infantum (syn Leishmania chagasi) infection. Out of the Leishmania infected cats, coinfection with FIV was observed in 12/66(18.18%), with T. gondii in 17/66 (25.75%) and with both agents in 5/66(7.58%) cats. FeLV was found only in a single adult cat with no Leishmania infection. A positive association was observed in coinfection of Leishmania and FIV (p < 0.0001), but not with T. gondii (p > 0.05). In conclusion, cats living in endemic areas of visceral leishmaniasis are significantly more likely to be coinfected with Fly, which may present confounding clinical signs and therefore cats in such areas should be always carefully screened for coinfections. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite advances in our understanding of the mechanisms involved in sex determination and differentiation, the specific roles of many genes in these processes are not completely understood in humans. Both DMRT1 and FGF9 are among this group of genes. Dmrt1 controls germ cell differentiation, proliferation, migration and pluripotency and Sertoli cell proliferation and differentiation. Fgf9 has been considered a critical factor in early testicular development and germ cell survival in mice. We screened for the presence of DMRT1 and FGF9 mutations in 33 patients with 46,XY gonadal dysgenesis. No deletions in either DMRT1 or FGF9 were identified using the MLPA technique. Eight allelic variants of DMRT1 were identified, and in silico analysis suggested that the novel c.968-15insTTCTCTCT variant and the c.774G>C (rs146975077) variant could have potentially deleterious effects on the DMRT1 protein. Nine previously described FGF9 allelic variants and six different alleles of the 3' UTR microsatellite were identified. However, none of these DMRT1 or FGF9 variants was associated with increased 46,XY gonadal dysgenesis. In conclusion, our study suggests that neither DMRT1 nor FGF9 abnormalities are frequently involved in dysgenetic male gonad development in patients with non-syndromic 46,XY disorder of sex development. (C) 2012 Published by Elsevier Masson SAS.