2 resultados para 2003-07-BS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Abstract Background Plasmodium vivax is the most widely distributed human malaria, responsible for 70–80 million clinical cases each year and large socio-economical burdens for countries such as Brazil where it is the most prevalent species. Unfortunately, due to the impossibility of growing this parasite in continuous in vitro culture, research on P. vivax remains largely neglected. Methods A pilot survey of expressed sequence tags (ESTs) from the asexual blood stages of P. vivax was performed. To do so, 1,184 clones from a cDNA library constructed with parasites obtained from 10 different human patients in the Brazilian Amazon were sequenced. Sequences were automatedly processed to remove contaminants and low quality reads. A total of 806 sequences with an average length of 586 bp met such criteria and their clustering revealed 666 distinct events. The consensus sequence of each cluster and the unique sequences of the singlets were used in similarity searches against different databases that included P. vivax, Plasmodium falciparum, Plasmodium yoelii, Plasmodium knowlesi, Apicomplexa and the GenBank non-redundant database. An E-value of <10-30 was used to define a significant database match. ESTs were manually assigned a gene ontology (GO) terminology Results A total of 769 ESTs could be assigned a putative identity based upon sequence similarity to known proteins in GenBank. Moreover, 292 ESTs were annotated and a GO terminology was assigned to 164 of them. Conclusion These are the first ESTs reported for P. vivax and, as such, they represent a valuable resource to assist in the annotation of the P. vivax genome currently being sequenced. Moreover, since the GC-content of the P. vivax genome is strikingly different from that of P. falciparum, these ESTs will help in the validation of gene predictions for P. vivax and to create a gene index of this malaria parasite.
Resumo:
Abstract Background Despite the extensive polymorphism at the merozoite surface protein-1 (MSP-1) locus of Plasmodium falciparum, that encodes a major repetitive malaria vaccine candidate antigen, identical and nearly identical alleles frequently occur in sympatric parasites. Here we used microsatellite haplotyping to estimate the genetic distance between isolates carrying identical and nearly identical MSP-1 alleles. Methods We analyzed 28 isolates from hypoendemic areas in north-western Brazil, collected between 1985 and 1998, and 23 isolates obtained in mesoendemic southern Vietnam in 1996. MSP-1 alleles were characterized by combining PCR typing with allele-specific primers and partial DNA sequencing. The following single-copy microsatellite markers were typed : Polyα, TA42 (only for Brazilian samples), TA81, TA1, TA87, TA109 (only for Brazilian samples), 2490, ARAII, PfG377, PfPK2, and TA60. Results The low pair-wise average genetic distance between microsatellite haplotypes of isolates sharing identical MSP-1 alleles indicates that epidemic propagation of discrete parasite clones originated most identical MSP-1 alleles in parasite populations from Brazil and Vietnam. At least one epidemic clone propagating in Brazil remained relatively unchanged over more than one decade. Moreover, we found no evidence that rearrangements of MSP-1 repeats, putatively created by mitotic recombination events, generated new alleles within clonal lineages of parasites in either country. Conclusion Identical MSP-1 alleles originated from co-ancestry in both populations, whereas nearly identical MSP-1 alleles have probably appeared independently in unrelated parasite lineages.