4 resultados para 12E-diene

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nestmate recognition is fundamental for the maintenance of social organization in insect nests. It is becoming well recognized that cuticle hydrocarbons mediate the recognition process, although the origin of recognition cues in stingless bees remains poorly explored. The present study investigates the effects of endogenously-produced and environmentally-acquired components in cuticular hydrocarbons in stingless bees. The tests are conducted using colonies of Plebeia droryana Friese and Plebeia remota Holmberg. Recognition tests are performed with four different groups: conspecific nestmates, conspecific non-nestmates, heterospecifics and conspecific, genetically-related individuals that emerge in a heterospecific nest. This last group is produced by introducing brood cells of P. droryana into a P. remota colony, and the resulting adult bees are tested for acceptance 10 days after emergence. For all groups, 15 individuals are sampled for chemical analysis. The results show the acceptance of all conspecific nestmates, and the rejection of almost every conspecific non-nestmate and every heterospecific bee. Genetically-related individuals emerging from heterospecific nests present intermediate rejection (66.7% rejection). Chemical analysis shows that P. droryana individuals emerging in a P. remota nest have small amounts of alkene and diene isomers found in P. remota cuticle that are not found in workers from the natal nest. The data clearly show that the majority of the compounds present in P. droryana cuticle are endogenously produced, although a few unsaturated compounds are acquired from the environment, increasing the chemical differences and, consequently, the rejection percentages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work poly(hydroxybutyrate/poly(vinyl butyral)- co-(vinyl alcohol)-co(vinyl acetate) (or ethylene propylene diene monomer rubber) blends were prepared by conventional processing techniques (extrusion and injection moulding). A droplet type morphology was obtained for P(3HB)/PVB blends whereas P(3HB)/EPDM blends presented some extent of co-continuous morphology. In addition, rubbery domains were much smaller in the case of PVB. These differences in morphology are discussed taking into account solubility parameters and rheological behaviours of each component. For both blends, the increase of elastomer ratio led to a decrease of Young's modulus but an increase in elongation at break and impact strength. The latter increased more in the case of P(3HB)/EPDM blends although the rubbery domains were larger. These results are explained in the light of the glass transition of the rubber and the presence of plasticizer in the case of PVB. The addition of elastomer also resulted in an increase of P(3HB) biodegradation rate, especially in the case of EPDM. It is assumed that, in this case, the size and morphology of the rubbery domains induce a geometrical modification of the erosion front which leads to an increase of the interface between P(3HB) phase and the degradation medium and consequently to an apparently faster biodegradation kinetics of PHB/rubber blends. Copyright (C) 2011 Society of Chemical Industry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two new epimeric chlorinated withaphysalins, rel-(4 beta,5 beta,6 alpha,18S,22R)- and rel-(4 beta,5 beta,6 alpha,18R,22R)-6-chloro-18,20-epoxy-18-ethoxy-4,5-dihydroxy-1- oxowitha-2,24-diene-26,22-lactone (1 and 2 resp.), together with the new rel-(4 beta,5 beta,6a,18R,22R)-6-chloro-18,20-epoxy-4,5-dihydroxy-18-methoxy-1-oxowitha-2,24-diene-26,22-lactone (3) and rel-(3 beta,4 beta,5 beta,6 beta,18R,22R)-5,6:18,20-diepoxy-3,18-diethoxy-4-hydroxy-1-oxowith-24-ene-26,22-lactone (4) were isolated from the leaves of Acnistus arborescens and named withaphysalins TW, respectively. The final structures and the complete 1H- and 13C-NMR assignments of the three chlorowithaphysalins 13 were performed by means of HR-ESI-MS and 1D- and 2D-NMR experiments, including COSY, HSQC, and HMBC, beside comparison with spectral data of analogous compounds from the literature. The structure of 4 was also confirmed by means of a single-crystal X-ray diffraction analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blending polypropylene (PP) with biodegradable poly(3-hydroxybutyrate) (PHB) can be a nice alternative to minimize the disposal problem of PP and the intrinsic brittleness that restricts PHB applications. However, to achieve acceptable engineering properties, the blend needs to be compatibilized because of the immiscibility between PP and PHB. In this work, PP/PHB blends were prepared with different types of copolymers as possible compatibilizers: poly(propylene-g-maleic anhydride) (PPMAH), poly (ethylene-co-methyl acrylate) [P(EMA)], poly(ethylene-co-glycidyl methacrylate) [P(EGMA)], and poly(ethylene-co-methyl acrylate-co-glycidyl methacrylate) [P(EMAGMA)]. The effect of each copolymer on the morphology and mechanical properties of the blends was investigated. The results show that the compatibilizers efficiency decreased in this order: P(EMAGMA) > P(EMA) > P(EGMA) > PP-MAH; we explained this by taking into consideration the affinity degree of the compatibilizers with the PP matrix, the compatibilizers properties, and their ability to provide physical and/or reactive compatibilization with PHB. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 123: 3511-3519, 2012