3 resultados para 108-660

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The objective of this study was to analyze the bacterial morphology by atomic force microscopy (AFM) after the application of low-level laser therapy (LLLT) in in vitro culture of Staphylococcus aureus ATCC 29213. Background data: Infections caused by S. aureus are among the highest occurring in hospitals and can often colonize pressure ulcers. LLLT is among the methods used to accelerate the healing of ulcers. However, there is no consensus on its effect on bacteria. Materials and methods: After being cultivated and seeded, the cultures were irradiated using wavelengths of 660, 830, and 904 nm at fluences of 0, 1, 2, 3, 4, 5, and 16 J/cm(2). Viable cells of S. aureus strain were counted after 24 h incubation. To analyze the occurrence of morphological changes, the topographical measurement of bacterial cells was analyzed using the AFM. Results: The overall assessment revealed that the laser irradiation reduced the S. aureus growth using 830 and 904 nm wavelengths; the latter with the greatest inhibition of the colony-forming units (CFU/mL) (331.1 +/- 38.19 and 137.38 +/- 21.72). Specifically with 660 nm, the statistical difference occurred only at a fluence of 3 J/cm(2). Topographical analysis showed small changes in morphological conformity of the samples tested. Conclusions: LLLT reduced the growth of S. aureus with 830 and 904 nm wavelengths, particularly with 904 nm at a fluence of 3 J/cm(2), where the greatest topographical changes of the cell structure occurred.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In animal and clinical trials low-level laser therapy (LLLT) using red, infrared and mixed wavelengths has been shown to delay the development of skeletal muscle fatigue. However, the parameters employed in these studies do not allow a conclusion as to which wavelength range is better in delaying the development of skeletal muscle fatigue. With this perspective in mind, we compared the effects of red and infrared LLLT on skeletal muscle fatigue. A randomized double-blind placebo-controlled crossover trial was performed in ten healthy male volunteers. They were treated with active red LLLT, active infrared LLLT (660 or 830 nm, 50 mW, 17.85 W/cm(2), 100 s irradiation per point, 5 J, 1,785 J/cm(2) at each point irradiated, total 20 J irradiated per muscle) or an identical placebo LLLT at four points of the biceps brachii muscle for 3 min before exercise (voluntary isometric elbow flexion for 60 s). The mean peak force was significantly greater (p < 0.05) following red (12.14%) and infrared LLLT (14.49%) than following placebo LLLT, and the mean average force was also significantly greater (p < 0.05) following red (13.09%) and infrared LLLT (13.24%) than following placebo LLLT. There were no significant differences in mean average force or mean peak force between red and infrared LLLT. We conclude that both red than infrared LLLT are effective in delaying the development skeletal muscle fatigue and in enhancement of skeletal muscle performance. Further studies are needed to identify the specific mechanisms through which each wavelength acts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background It has been speculated that the biostimulatory effect of Low Level Laser Therapy could cause undesirable enhancement of tumor growth in neoplastic diseases. The aim of the present study is to analyze the behavior of melanoma cells (B16F10) in vitro and the in vivo development of melanoma in mice after laser irradiation. Methods We performed a controlled in vitro study on B16F10 melanoma cells to investigate cell viability and cell cycle changes by the Tripan Blue, MTT and cell quest histogram tests at 24, 48 and 72 h post irradiation. The in vivo mouse model (male Balb C, n = 21) of melanoma was used to analyze tumor volume and histological characteristics. Laser irradiation was performed three times (once a day for three consecutive days) with a 660 nm 50 mW CW laser, beam spot size 2 mm2, irradiance 2.5 W/cm2 and irradiation times of 60s (dose 150 J/cm2) and 420s (dose 1050 J/cm2) respectively. Results There were no statistically significant differences between the in vitro groups, except for an increase in the hypodiploid melanoma cells (8.48 ± 1.40% and 4.26 ± 0.60%) at 72 h post-irradiation. This cancer-protective effect was not reproduced in the in vivo experiment where outcome measures for the 150 J/cm2 dose group were not significantly different from controls. For the 1050 J/cm2 dose group, there were significant increases in tumor volume, blood vessels and cell abnormalities compared to the other groups. Conclusion LLLT Irradiation should be avoided over melanomas as the combination of high irradiance (2.5 W/cm2) and high dose (1050 J/cm2) significantly increases melanoma tumor growth in vivo.