2 resultados para ”we” identity

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although Pleurodiran turtles represent an important component of extant turtle radiation, our knowledge of the development and homology of limb bones in turtles rests mostly upon observations made on derived members of the Cryptodiran clade. Herein, we describe limb development in three pleurodirans: Podocnemis unifilis Troschel, 1848, Podocnemis sextuberculata Cornalia, 1849 and Phrynops hilarii (Dumeril and Bibron, 1835), in an effort to contribute to filling this anatomical gap. For earlier stages of limb development, we described the Y-shaped condensation that gave rise to the zeugopodial cartilages, and differentiation of the primary axis/digital arch that reveals the invariant pattern common to tetrapods. There are up to four central cartilaginous foci in the carpus, and the proximal tarsale is formed by the fusion of the fibulare, intermedium, and centrale 4. Digital development is similar for the five digits. Changes in toe V occur predominantly in the distal tarsale 5. Ontogenetic reduction of phalanges is observed in toe V of Podocnemis. Based on these results, we suggest that the hooked element present in the chelonian tarsus, and traditionally recognized as a modified fifth metatarsale, is actually the fifth distal tarsale. Additionally, our data on limb development of pleurodiran turtles supply more taxonomically comprehensive information to interpret limb configuration within the chelonian clade. (C) 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 155, 845-866.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Germline and early embryo development constitute ideal model systems to study the establishment of polarity, cell identity, and asymmetric cell divisions (ACDs) in plants. We describe here the function of the MATH-BTB domain protein MAB1 that is exclusively expressed in the germ lineages and the zygote of maize (Zea mays). mab1 (RNA interference [RNAi]) mutant plants display chromosome segregation defects and short spindles during meiosis that cause insufficient separation and migration of nuclei. After the meiosis-to-mitosis transition, two attached nuclei of similar identity are formed in mab1 (RNAi) mutants leading to an arrest of further germline development. Transient expression studies of MAB1 in tobacco (Nicotiana tabacum) Bright Yellow-2 cells revealed a cell cycle-dependent nuclear localization pattern but no direct colocalization with the spindle apparatus. MAB1 is able to form homodimers and interacts with the E3 ubiquitin ligase component Cullin 3a (CUL3a) in the cytoplasm, likely as a substrate-specific adapter protein. The microtubule-severing subunit p60 of katanin was identified as a candidate substrate for MAB1, suggesting that MAB1 resembles the animal key ACD regulator Maternal Effect Lethal 26 (MEL-26). In summary, our findings provide further evidence for the importance of posttranslational regulation for asymmetric divisions and germline progression in plants and identified an unstable key protein that seems to be involved in regulating the stability of a spindle apparatus regulator(s).