2 resultados para Épidémiologie spatiale
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objective The Brazilian National Hansens Disease Control Program recently identified clusters with high disease transmission. Herein, we present different spatial analytical approaches to define highly vulnerable areas in one of these clusters. Method The study area included 373 municipalities in the four Brazilian states Maranha o, Para ', Tocantins and Piaui '. Spatial analysis was based on municipalities as the observation unit, considering the following disease indicators: (i) rate of new cases / 100 000 population, (ii) rate of cases < 15 years / 100 000 population, (iii) new cases with grade-2 disability / 100 000 population and (iv) proportion of new cases with grade-2 disabilities. We performed descriptive spatial analysis, local empirical Bayesian analysis and spatial scan statistic. Results A total of 254 (68.0%) municipalities were classified as hyperendemic (mean annual detection rates > 40 cases / 100 000 inhabitants). There was a concentration of municipalities with higher detection rates in Para ' and in the center of Maranha o. Spatial scan statistic identified 23 likely clusters of new leprosy case detection rates, most of them localized in these two states. These clusters included only 32% of the total population, but 55.4% of new leprosy cases. We also identified 16 significant clusters for the detection rate < 15 years and 11 likely clusters of new cases with grade-2. Several clusters of new cases with grade-2 / population overlap with those of new cases detection and detection of children < 15 years of age. The proportion of new cases with grade-2 did not reveal any significant clusters. Conclusions Several municipality clusters for high leprosy transmission and late diagnosis were identified in an endemic area using different statistical approaches. Spatial scan statistic is adequate to validate and confirm high-risk leprosy areas for transmission and late diagnosis, identified using descriptive spatial analysis and using local empirical Bayesian method. National and State leprosy control programs urgently need to intensify control actions in these highly vulnerable municipalities.
Resumo:
Gravity Recovery and Climate Experiment (GRACE) mission is dedicated to measuring temporal variations of the Earth's gravity field. In this study, the Stokes coefficients made available by Groupe de Recherche en Géodésie Spatiale (GRGS) at a 10-day interval were converted into equivalent water height (EWH) for a ~4-year period in the Amazon basin (from July-2002 to May-2006). The seasonal amplitudes of EWH signal are the largest on the surface of Earth and reach ~ 1250mm at that basin's center. Error budget represents ~130 mm of EWH, including formal errors on Stokes coefficient, leakage errors (12 ~ 21 mm) and spectrum truncation (10 ~ 15 mm). Comparison between in situ river level time series measured at 233 ground-based hydrometric stations (HS) in the Amazon basin and vertically-integrated EWH derived from GRACE is carried out in this paper. Although EWH and HS measure different water bodies, in most of the cases a high correlation (up to ~80%) is detected between the HS series and EWH series at the same site. This correlation allows adjusting linear relationships between in situ and GRACE-based series for the major tributaries of the Amazon river. The regression coefficients decrease from up to down stream along the rivers reaching the theoretical value 1 at the Amazon's mouth in the Atlantic Ocean. The variation of the regression coefficients versus the distance from estuary is analysed for the largest rivers in the basin. In a second step, a classification of the proportionality between in situ and GRACE time-series is proposed.