2 resultados para µ-flagellates
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Abstract Background The mitochondrial DNA of kinetoplastid flagellates is distinctive in the eukaryotic world due to its massive size, complex form and large sequence content. Comprised of catenated maxicircles that contain rRNA and protein-coding genes and thousands of heterogeneous minicircles encoding small guide RNAs, the kinetoplast network has evolved along with an extreme form of mRNA processing in the form of uridine insertion and deletion RNA editing. Many maxicircle-encoded mRNAs cannot be translated without this post-transcriptional sequence modification. Results We present the complete sequence and annotation of the Trypanosoma cruzi maxicircles for the CL Brener and Esmeraldo strains. Gene order is syntenic with Trypanosoma brucei and Leishmania tarentolae maxicircles. The non-coding components have strain-specific repetitive regions and a variable region that is unique for each strain with the exception of a conserved sequence element that may serve as an origin of replication, but shows no sequence identity with L. tarentolae or T. brucei. Alternative assemblies of the variable region demonstrate intra-strain heterogeneity of the maxicircle population. The extent of mRNA editing required for particular genes approximates that seen in T. brucei. Extensively edited genes were more divergent among the genera than non-edited and rRNA genes. Esmeraldo contains a unique 236-bp deletion that removes the 5'-ends of ND4 and CR4 and the intergenic region. Esmeraldo shows additional insertions and deletions outside of areas edited in other species in ND5, MURF1, and MURF2, while CL Brener has a distinct insertion in MURF2. Conclusion The CL Brener and Esmeraldo maxicircles represent two of three previously defined maxicircle clades and promise utility as taxonomic markers. Restoration of the disrupted reading frames might be accomplished by strain-specific RNA editing. Elements in the non-coding region may be important for replication, transcription, and anchoring of the maxicircle within the kinetoplast network.
Resumo:
Estuaries are extremely dynamic environments that are vulnerable to anthropogenic alterations. Thus, monitoring phytoplankton abundances and composition is an essential tool for the prediction of eutrophication and its effects on coastal ecosystems. Phytoplankton biomass, as chlorophyll-a, in the São Vicente estuary (Brazil) varies in response to tidal cycles and seasonal rainfall. Objectives. To present two datasets designed to assess the relationship between chlorophyll-a and changes in water turbidity driven by tide and rain. Methods. Weekly observations were made in the shallow embayment (February to September 2008; site 1) and observations recorded on alternate days (summer 2010, site 2). Results. At site 1, turbidity differed between high and low tides, but on most days was over 3000 RU, maintaining moderate chlorophyll-a levels (4 mg.m-3) and only two blooms developed during low turbidity. Site 2 mean turbidity was 1500 RU, nutrient level was higher during neap tides and phytoplankton blooms were mainly observed at the end of neap tides at 15-day intervals, dominated by chain-forming diatoms and occasionally flagellates and pennate diatoms. Conclusions. Taxonomic composition of the blooms was different and their frequency altered by events characterized by intense freshwater discharges from the Henry Borden Hydroelectric Dam (> 9*106.m³), inhibiting phytoplankton accumulation during neap tide periods.