3 resultados para |Hormone concentration
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Background: The effect of intranasal corticosteroids on the nasal epithelium mucosa is an important parameter of treatment safety. This study was designed to examine whether treatment with topical corticosteroids in patients with allergic rhinitis causes atrophic nasal mucosal changes, when compared with systemic corticosteroids, in rats. Methods: Male Wistar rats were treated daily during 7 weeks with topical administration with 10 microliters of normal saline (control group), 10 microliters of mometasone furoate group, 10 microliters of triamcinolone acetonide (T group), and 8 mg/kg of daily subcutaneous injections of methylprednisolone sodium succinate (MP group). Body weight was evaluated weekly. At the end of the treatment, rats were killed by decapitation to collect blood for determination of corticosterone levels and nasal cavities were prepared for histological descriptive analyses. Results: Treatment with T and MP decreased body weight. Plasma corticosterone concentration was significantly reduced by MP treatment and presented a clear tendency to decrease after T treatment. Histological changes observed in group T included ripples, cell vacuolization, increase in the number of nuclei, and decrease in the number of cilia in the epithelial cells. Conclusion: Growth and corticosterone concentration were impaired by T and MP at the same proportion, suggesting a role of this hormone in body gain. With the exception of T, intranasal or systemic treatment with the corticosteroids evaluated in this study did not affect nasal mucosa. (Am J Rhinol Allergy 26, e46-e49, 2012; doi: 10.2500/ajra.2012.26.3702)
Resumo:
Evaluating the activity of the complement system under conditions of altered thyroid hormone levels might help elucidate the role of complement in triggering autoimmune processes. Here, we investigated alternative pathway (AP) activity in male Wistar rats (180 ± 10 g) after altering their thyroid hormone levels by treatment with triiodothyronine (T3), propylthiouracil (PTU) or thyroidectomy. T3 and thyroxine (T4) levels were determined by chemiluminescence assays. Hemolytic assays were performed to evaluate the lytic activity of the AP. Factor B activity was evaluated using factor B-deficient serum. An anti-human factor B antibody was used to measure factor B levels in serum by radial immunodiffusion. T3 measurements in thyroidectomized animals or animals treated with PTU demonstrated a significant reduction in hormone levels compared to control. The results showed a reduction in AP lytic activity in rats treated with increasing amounts of T3 (1, 10, or 50 µg). Factor B activity was also decreased in the sera of hyperthyroid rats treated with 1 to 50 µg T3. Additionally, treating rats with 25 µg T3 significantly increased factor B levels in their sera (P < 0.01). In contrast, increased factor B concentration and activity (32%) were observed in hypothyroid rats. We conclude that alterations in thyroid hormone levels affect the activity of the AP and factor B, which may in turn affect the roles of AP and factor B in antibody production.
Resumo:
We previously showed that short-term hypo- and hyperthyroidism induce changes in neuropeptide glutamic-acid-isoleucine-amide (NEI) concentrations in discrete brain areas in male rats. To investigate the possible effects of hypo- and hyperthyroidism on NEI concentrations mainly in hypothalamic areas related to reproduction and behavior, female rats were sacrificed at different days of the estrous cycle. Circulating luteinizing hormone (LH), estradiol and progesterone concentrations were measured in control, hypothyroid (hypoT, treated with PTU during 7-9 days) and hyperthyroid (hyperT, l-T4 during 4-7 days) animals. Both treatments blunted the LH surge. Hypo- and hyperthyroidism increased estradiol concentrations during proestrus afternoon (P-PM), although hypoT rats showed lower values compared to control during proestrus morning (P-AM). Progesterone levels were higher in all groups at P-PM and in the hyperT during diestrus morning (D2). NEI concentrations were lower in hypoT rats during the estrous cycle except in estrus (E) in the peduncular part of the lateral hypothalamus (PLH). They were also reduced by both treatments in the perifornical part of the lateral hypothalamus (PeFLH) during P-PM. Hypothyroidism led to higher NEI concentrations during P-PM in the organum vasculosum of the lamina terminalis and anteroventral periventricular nucleus (OVLT+AVPV). The present results indicate that NEI concentration is regulated in a complex manner by hypo- and hyperthyroidism in the different areas studied, suggesting a correlation between NEI values and the variations of gonadal steroid levels during estrous cycle. These changes could be, in part, responsible for the alterations observed in the hypothalamic-pituitary-gonadal axis in these pathologies.