191 resultados para Chemistry, Physical.
Resumo:
This work evaluates the efficiency of economic levels of theory for the prediction of (3)J(HH) spin-spin coupling constants, to be used when robust electronic structure methods are prohibitive. To that purpose, DFT methods like mPW1PW91. B3LYP and PBEPBE were used to obtain coupling constants for a test set whose coupling constants are well known. Satisfactory results were obtained in most of cases, with the mPW1PW91/6-31G(d,p)//B3LYP/6-31G(d,p) leading the set. In a second step. B3LYP was replaced by the semiempirical methods PM6 and RM1 in the geometry optimizations. Coupling constants calculated with these latter structures were at least as good as the ones obtained by pure DFT methods. This is a promising result, because some of the main objectives of computational chemistry - low computational cost and time, allied to high performance and precision - were attained together. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We use the photosensitive chlorine dioxide-iodine-malonic acid reaction-diffusion system to study wavenumber locking of Turing patterns to two-dimensional "square" spatial forcing, implemented as orthogonal sets of bright bands projected onto the reaction medium. Various resonant structures emerge in a broad range of forcing wavelengths and amplitudes, including square lattices and superlattices, one-dimensional stripe patterns and oblique rectangular patterns. Numerical simulations using a model that incorporates additive two-dimensional spatially periodic forcing reproduce well the experimental observations.
Resumo:
Nowadays, there is a great interest in the economic success of direct ethanol fuel cells; however, our atomistic understanding of the designing of stable and low-cost catalysts for the steam reforming of ethanol is still far from satisfactory, in particular due to the large number of undesirable intermediates. In this study, we will report a first-principles investigation of the adsorption properties of ethanol and water at low coverage on close-packed transition-metal (TM) surfaces, namely, Fe(110), Co(0001), Ni(111), Cu(111), Ru(0001), Rh(111), Pd(111), Ag(111), Os(0001), Ir(111), Pt(111), and Au(111), employing density functional theory (DFT) calculations. We employed the generalized gradient approximation with the formulation proposed by Perdew, Burke, and Erzenholf (PBE) to the exchange correlation functional and the empirical correction proposed by S. Grimme (DFT+D3) for the van der Waals correction. We found that both adsorbates binds preferentially near or on the on top sites of the TM surfaces through the 0 atoms. The PBE adsorption energies of ethanol and water decreases almost linearly with the increased occupation of the 4d and 5d d-band, while there is a deviation for the 3d systems. The van der Waals correction affects the linear behavior and increases the adsorption energy for both adsorbates, which is expected as the van der Waals energy due to the correlation effects is strongly underestimated by DFT-PBE for weak interacting systems. The geometric parameters for water/TM are not affected by the van der Waals correction, i.e., both DFT and DFT+D3 yield an almost parallel orientation for water on the TM surfaces; however, DFT+D3 changes drastically the ethanol orientation. For example, DFT yields an almost perpendicular orientation of the C-C bond to the TM surface, while the C-C bond is almost parallel to the surface using DFT +D3 for all systems, except for ethanol/Fe(110). Thus, the van der Waals correction decreases the distance of the C atoms to the TM surfaces, which might contribute to break the C-C bond. The work function decreases upon the adsorption of ethanol and water, and both follow the same trends, however, with different magnitude (larger for ethanol/TM) due to the weak binding of water to the surface. The electron density increases mainly in the region between the topmost layer and the adsorbates, which explains the reduction of the substrate work function.
Resumo:
The photophysics of 8-azaadenine (8-AA) has been studied with the CASPT2//CASSCF protocol and ANO-L double-zeta basis sets. Stationary equilibrium structures, surface crossings, minimum energy paths, and linear interpolations have been used to study possible mechanisms to populate the lowest triplet state, T-1 (3)(pi pi*), capable of sensitizing molecular oxygen. Our results show that two main mechanisms can occur after photoexcitation to the S-2 (1)(pi pi*) state. The first one is through the S-2/S-1 conical intersection (((1)pi pi*/(1)n pi*)(Cl)), leading to the S-1 ((1)n pi*) state minimum, (S-1 ((1)n pi*))(min), where a singlet-triplet crossing, ((1)n pi*/(3)pi pi*)(STC), is accessible. The second one starts with the ((1)pi pi*/(3)n pi*)(STC) at the (S-2((1)pi pi*))(min), from which the system can evolve to the (T-2 ((3)n pi*))(min), with subsequent population of the T-1 excited electronic state, due to the ((3)n pi*/(3)pi pi*)(Cl) conical intersection.
Resumo:
The performance of an ABPBI-based High Temperature H-2/O-2 PEMFC system was studied under different experimental conditions. Increasing the temperature from 130 to 170 degrees C improved the cell performance, even though further increase was not beneficial for the system. Humidification of the H-2 stream ameliorated this behaviour, even though operating above 170 degrees C is not advisable in terms of cell performance. A significant electrolyte dehydration seems to negatively affect the fuel cell performance, especially in the case of the anode. In the presence of 2% vol. CO in the H-2 stream, the temperature exerted a positive effect on the cell performance, reducing the strong adsorption of this poison on the platinum sites. Moreover, humidification of the H-2 + CO stream increased the maximum power densities of the cell, further alleviating the CO poisoning effects. Actual CO-O-2 fuel cell results confirmed the significant beneficial effect of the relative humidity on the kinetics of the CO oxidation process. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
With the introduction of fluoride as the main anticaries agent used in preventive dentistry, and perhaps an increase in fluoride in our food chain, dental fluorosis has become an increasing world-wide problem. Visible signs of fluorosis begin to become obvious on the enamel surface as opacities, implying some porosity in the tissue. The mechanisms that conduct the formation of fluorotic enamel are unknown, but should involve modifications in the basic physical-chemistry reactions of demineralization and remineralisation of the enamel of the teeth, which is the same reaction of formation of the enamel's hydroxyapatite (HAp) in the maturation phase. The increase of the amount of fluoride inside of the apatite will result in gradual increase of the lattice parameters. The aim of this work is to characterize the healthy and fluorotic enamel in human tooth using Synchrotron X-ray diffraction. All the scattering profile measurements were carried out at the X-ray diffraction beamline (XRD1) at the Brazilian Synchrotron Light Laboratory-LNLS, Campinas, Brazil. X-ray diffraction experiments were performed both in powder samples and polished surfaces. The powder samples were analyzed to obtain the characterization of a typical healthy enamel pattern. The polished surfaces were analyzed in specific areas that have been identified as fluorotic ones. X-ray diffraction data were obtained for all samples and these data were compared with the control samples and also with the literature data. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The effect of trace quantities of ammonia on oxygen reduction reaction (ORR) on carbon-supported platinum catalysts in perchloric acid solutions is assessed using rotating ring disk electrode (RRDE) technique. The study demonstrates that ammonia has detrimental effects on ORR. The most significant effect takes place in the potential region above 0.7 V vs RHE. The effect is explained by the electrochemical oxidation of ammonia, which blocks Pt active sites and increases the formation of H2O2. This leads to losses in the disk currents and increments in the ring currents. The apparent losses in ORR currents may occur in two ways, namely, through the blocking of the active sites for ORR as well as by generating a small anodic current, which is believed to have a lower contribution. In addition, a detrimental effect of sodium cations in the potential range below 0.75 V vs RHE was demonstrated. This effect is most likely due to the co-adsorption of sodium cations and perchlorate anions on the Pt surface. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
A new molecular species, MgAs, is investigated theoretically for the first time at the CASSCF/MRCI level using quintuple-zeta quality basis sets. Potential energy curves for the lowest-lying electronic states are presented as well as the associated spectroscopic constants. Dipole and transition moment functions for selected states complement this characterization. Estimates of transition probabilities and radiative life-times for the most important transitions are also reported. The effect of spin-orbit interactions is clearly reflected on the potential energy curves. Comparisons with BeAs, BeN, and BeP are made where pertinent. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper reports the spectroscopic study on the structural differences of thermally induced cross-linking segments in polyaniline in its emeraldine salt (PANI-ES) and base (PANI-EB) forms. Casting films of PANI-ES (ES-film) and PANI-EB (EB-film) were prepared and heated at 150 degrees C under atmospheric air for 30 min. Raman spectra excited at 632.8 nm of heated ES-film presented the characteristic bands of phenazine-like structures at 1638, 1392, and 575 cm(-1), whereas EB-film showed lower relative intensities for these bands. The lower content of phenazine-like segments in heated EB-film is related to residual polaronic segments from preparation procedures, as revealed by Raman. This statement was confirmed by a sequence of thermal and doping experiments in both films. Quantum-chemical calculations by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) showed that the phenazine-like structure presents the intense Raman band at 1350 cm(-1) due to heterocycle breathing mode, and the non-phenazine-like structure (substituted hydrophenazine-type) presents higher energy for HOMO-LUMO transition, indicating the lack of conjugation in the heterocycle compared with the phenazine-like structure. According to experimental and theoretical data reported here, it is proposed that only thermally treated PANI-ES presents phenazine-like rings, whereas PANI-EB presents heterocyclic non-aromatic structures.
Resumo:
PEM fuel cells seem to be the most affordable and commercially viable hydrogen-based cells, the biggest challenge being to obtain CO-free H-2 (<100 ppm) as the fuel. In this study, the use of CuO-CeO2 catalysts in preferential oxidation of CO to obtain CO-free H-2 (PROX reaction) was investigated. Ce1-xCuxO2 catalysts, with x (mol%) = 0, 0.01, 0.03, 0.05 and 0.10, were synthesized in one-step by the polymeric precursor method, to obtain a very fine dispersion and strong metal-support interaction, to favor active copper species and a preference for the PROX reaction. The results obtained from catalyzed reactions and characterization of the catalysts by XRD, Rietveld refinement, BET surface area, UV-Vis and TPR, suggest that this one-step synthesis method gives rise to catalysts with copper species selective for the PROX reaction, which reaches a maximum rate on Ce0.97Cu0.03O2 catalyst. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
The lyotropic liquid crystalline quaternary mixture made of potassium laurate (KL), potassium sulphate, 1-undecanol and water was investigated by experimental optical methods (optical microscopy and laser conoscopy). In a particular temperature and relative concentrations range, the three nematic phases (two uniaxial and one biaxial) were identified. The biaxial domain in the temperature/KL concentration surface is larger when compared to other lyotropic mixtures. Moreover, this new mixture gives nematic phases with higher birefringence than similar systems. The behavior of the symmetric tensor order parameter invariants sigma(3) and sigma(2) calculated from the measured optical birefringences supports that the uniaxial-to-biaxial transitions are of second order, described by a mean-field theory.
Resumo:
The kinetic resolution of chiral beta-borylated carboxylic esters via lipase-catalyzed hydrolysis and transesterification reactions was studied. The enantioselective hydrolysis catalyzed by CAL-B furnished the beta-borylated carboxylic acid with reasonable enantiomeric excess (62% ee), while both methyl and ethyl beta-borylated carboxylic esters were recovered with excellent ee (>99%). Meanwhile, the transesterification reaction of beta-borylated carboxylic esters and several alcohols, catalyzed by CAL-B, only indicated a high selectivity when ethanol and methyl-(beta-pinacolylboronate)-butanoate were used as substrates, which gave ethyl-(beta-pinacolylboronate)-butanoate with >99% ee. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
An extensive investigation of strontium titanate, SrTiO3 (STO), nanospheres synthesized via a microwave-assisted hydrothermal (MAH) method has been conducted to gain a better insight into thermodynamic, kinetic, and reaction phenomena involved in STO nucleation and crystal growth processes. To this end, quantum chemical modeling based on the density functional theory and periodic super cell models were done. Several experimental techniques were employed to get a deep characterization of structural and optical features of STO nanospheres. A possible formation mechanism was proposed, based on dehydration of titanium and strontium clusters followed by mesoscale transformation and a self-assembly process along an oriented attachment mechanism resulting in spherical like shape. Raman and XANES analysis renders a noncentrosymmetric environment for the octahedral titanium, while infrared and first order Raman modes reveal OH groups which are unsystematically incorporated into uncoordinated superficial sites. These results seem to indicate that the key component is the presence of distorted TiO6 clusters to engender a luminescence property. Analysis of band structure, density Of states, and charge map shows that there is a close relationship among local broken symmetry, polarization, and energy split of the 3d orbitals of titanium. The interplay among these electronic and structural features provides necessary conditions to evaluate its luminescent properties under two energy excitation.
Resumo:
The title compound [Ni(C20H15N2OS)(2)] is prepared by the reaction of metal acetate with the corresponding acylthiourea derivative. The complex is characterized by elemental analysis, IR, H-1 and C-13 NMR, and its structure is determined by single crystal X-ray diffraction. The Ni(II) ion is coordinated by the S and O atoms of two N-benzoyl-N',N'-diphenylthiourea ligands in a slightly distorted square-planar coordination geometry. The two O and two S atoms are mutually cis to each other. The substance crystallizes triclinic (P-1 space group) with cell dimensions a = 10.7262(9) , b = 12.938(3) , c = 14.2085(12) , alpha = 74.650(4)A degrees, beta = 78.398(4)A degrees, gamma = 68.200(5)A degrees, and two formula units in the unit cell. The structure is very close to the related N-(2-furoyl) Ni complex reported previously.
Resumo:
The rate of solvolysis of p-nitrophenyl phosphate (PNPP) dianion in DMSO/water strongly decreases by increasing water concentration. Addition of linear alcohols (methanol, propanol, butanol, pentanol, and hexanol) at constant DMSO/water molar ratio produced an even sharper rate decrease. Alkyl phosphate formation, resulting from PNPP solvolysis in ternary DMSO/water/alcohol mixtures, increased with alcohol concentration and was essentially temperature independent. Methanol and hexanol were the poorest nucleophiles under all conditions. Activation energies and enthalpies for solvolysis in ternary mixtures were similar and entropies varied with alcohol concentration. Taken together these results can be best interpreted in terms of a dissociative mechanism with the intervention of metaphosphate. Copyright (C) 2011 John Wiley & Sons, Ltd.