81 resultados para Marrow Transplantation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background aims. Mesenchymal stromal cells (MSC) are being used to treat and prevent a variety of clinical conditions. To be readily available, MSC must be cryopreserved until infusion. However, the optimal cryopreservation methods, cryoprotector solutions and MSC sensitivity to dimethyl sulfoxide (DMSO) exposure are unknown. This study investigated these issues. Methods. MSC samples were obtained from human umbilical cord (n = 15), expanded with Minimal Essential Medium-alpha (alpha-MEM) 10% human serum (HS), resuspended in 25 mL solution (HS, 10% DMSO, 20% hydroxyethyl starch) and cryopreserved using the BioArchive (R) system. After a mean of 18 +/- 7 days, cell suspensions were thawed and diluted until a DMSO concentration of 2.5% was reached. Samples were tested for cell quantification and viability, immunophenotype and functional assays. Results. Post-thaw cell recovery: 114 +/- 2.90% (mean +/- SEM). Recovery of viable cells: 93.46 +/- 4.41%, 90.17 +/- 4.55% and 81.03 +/- 4.30% at 30 min, 120 min and 24 h post-thaw, respectively. Cell viability: 89.26 +/- 1.56%, 72.71 +/- 2.12%, 70.20 +/- 2.39% and 63.02 +/- 2.33% (P<0.0001) pre-cryopreservation and 30 min, 120 min and 24 h post-thaw, respectively. All post-thaw samples had cells that adhered to culture bottles. Post-thaw cell expansion was 4.18 +/- 0.17 X, with a doubling time of 38 +/- 1.69 h, and their capacity to inhibit peripheral blood mononuclear cells (PBMC) proliferation was similar to that observed before cryopreservation. Differentiation capacity, cell-surface marker profile and cytogenetics were not changed by the cryopreservation procedure. Conclusions. A method for cryopreservation of MSC in bags, in xenofree conditions, is described that facilitates their clinical use. The MSC functional and cytogenetic status and morphologic characteristics were not changed by cryopreservation. It was also demonstrated that MSC are relatively resistant to exposure to DMSO, but we recommend cell infusion as soon as possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several dosimetric methods have been proposed for estimating red marrow absorbed dose (RMAD) when radionuclide therapy is planned for differentiated thyroid cancer, although to date, there is no consensus as to whether dose calculation should be based on blood-activity concentration or not. Our purpose was to compare RMADs derived from methods that require collecting patients' blood samples versus those involving OLINDA/EXM software, thereby precluding this invasive procedure. This is a retrospective study that included 34 patients under treatment for metastatic thyroid disease. A deviation of 10 between RMADs was found, when comparing the doses from the most usual invasive dosimetric methods and those from OLINDA/EXM. No statistical difference between the methods was discovered, whereby the need for invasive procedures when calculating the dose is questioned. The use of OLINDA/EXM in clinical routine could possibly diminish data collection, thus giving rise to a simultaneous reduction in time and clinical costs, besides avoiding any kind of discomfort on the part of the patients involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some organ-transplanted patients achieve a state of "operational tolerance" (01) in which graft function is maintained after the complete withdrawal of immunosuppressive drugs. We used a gene panel of regulatory/inflammatory molecules (FOXP3, GATA3, 100, TGFB1, TGFBR1/TBX21, TNF and IFNG) to investigate the gene expression profile in peripheral blood mononuclear cells of renal-transplanted individuals experiencing OT compared to transplanted individuals not displaying OT and healthy individuals (HI). OT subjects showed a predominant regulatory (REG) profile with higher gene expression of GATA3, FOXP3, TGFB1 and TGFB receptor 1 compared to the other groups. This predominant REG gene expression profile displayed stability over time. The significant GATA3 gene and protein expressions in OT individuals suggest that a Th2 deviation may be a relevant pathway to OT. Moreover, the capacity of the REG/INFLAMMA gene panel to discriminate OT by peripheral blood analysis indicates that this state has systemic repercussions. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human endothelial cells (ECs) have the ability to make up the lining of blood vessels. These cells are also capable of neovascularization and revascularization and have been applied in various clinical situations. With the aim of understanding the effect of NANOG superexpression on ECs, we transduced the Nanog gene into the ECs. Nanog is highly expressed in embryonic stem cells (ESCs) and is essential for pluripotency and self-renewal. However, Nanog can also be expressed in somatic stem cells, and this gene is related to great expansion capacity in vitro. We found that ECs expressing Nanog showed expression of other stemness genes, such as Sox2, FoxD3, Oct4, Klf4, c-myc, and beta-catenin, that are not normally expressed or are expressed at very low levels in ECs. Nanog is one of the stemness genes that can activate other stemness genes, and the upregulation of the Nanog gene seems to be critical for reprogramming cells. In this study, the introduction of Nanog was sufficient to alter the expression of key genes of the pluripotent pathway. The functional importance of Nanog for altering the cell expression profile and morphology was clearly demonstrated by our results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human mesenchymal stem cells (hMSCs) are adult multipotent cells that have high therapeutic potential due to their immunological properties. They can be isolated from several different tissues with bone marrow (BM) being the most common source. Because the isolation procedure is invasive, other tissues such as human umbilical cord vein (UCV) have been considered. However, their interchangeability remains unclear. In the present study, total protein extracts of BM-hMSCs and UCV-hMSCs were quantitatively compared using gel-LC-MS/MS. Previous SAGE analysis of the same cells was re-annotated to enable comparison and combination of these two data sets. We observed a more than 63% correlation between proteomic and transcriptomic data. In silico analysis of highly expressed genes in cells of both origins suggests that they can be modulated by microRNA, which can change protein abundance. Our results showed that MSCs from both tissues shared high similarity in metabolic and functional processes relevant to their therapeutic potential, especially in the immune system process, response to stimuli, and processes related to the delivery of the hMSCs to a given tissue, such as migration and adhesion. Hence, our results support the idea that the more accessible UCV could be a potentially less invasive source of MSCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background:The golden retriever muscular dystrophy (GRMD) dogs represent the best available animal model for therapeutic trials aiming at the future treatment of human Duchenne muscular dystrophy (DMD). We have obtained a rare litter of six GRMD dogs (3 males and 3 females) born from an affected male and a carrier female which were submitted to a therapeutic trial with adult human stem cells to investigate their capacity to engraft into dogs muscles by local as compared to systemic injection without any immunosuppression. Methods Human Immature Dental Pulp Stem Cells (hIDPSC) were transplanted into 4 littermate dogs aged 28 to 40 days by either arterial or muscular injections. Two non-injected dogs were kept as controls. Clinical translation effects were analyzed since immune reactions by blood exams and physical scores capacity of each dog. Samples from biopsies were checked by immunohistochemistry (dystrophin markers) and FISH for human probes. Results and Discussion We analyzed the cells' ability in respect to migrate, engraftment, and myogenic potential, and the expression of human dystrophin in affected muscles. Additionally, the efficiency of single and consecutive early transplantation was compared. Chimeric muscle fibers were detected by immunofluorescence and fluorescent in situ hybridisation (FISH) using human antibodies and X and Y DNA probes. No signs of immune rejection were observed and these results suggested that hIDPSC cell transplantation may be done without immunosuppression. We showed that hIDPSC presented significant engraftment in GRMD dog muscles, although human dystrophin expression was modest and limited to several muscle fibers. Better clinical condition was also observed in the dog, which received monthly arterial injections and is still clinically stable at 25 months of age. Conclusion Our data suggested that systemic multiple deliveries seemed more effective than local injections. These findings open important avenues for further researches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background The use of stem cells to treat type 1 diabetes mellitus has been proposed for many years, both to downregulate the immune system and to provide β cell regeneration. Conclusion High dose immunosuppression followed by autologous hematopoietic stem cell transplantation is able to induce complete remission (insulin independence) in most patients with early onset type 1 diabetes mellitus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background No formulation of exogenous insulin available to date has yet been able to mimic the physiological nictemeral rhythms of this hormone, and despite all engineering advancements, the theoretical proposal of developing a mechanical replacement for pancreatic β cell still has not been reached. Thus, the replacement of β cells through pancreas and pancreatic islet transplantation are the only concrete alternatives for re-establishing the endogenous insulin secretion in type 1 diabetic patients. Since only 1 to 1.5% of the pancreatic mass corresponds to endocrine tissue, pancreatic islets transplantation arises as a natural alternative. Data from the International Islet Transplant Registry (ITR) from 1983 to December 2000 document a total of 493 transplants performed around the world, with progressively worse rates of post-transplant insulin independence. In 2000, the "Edmonton Protocol" introduced several modifications to the transplantation procedure, such as the use of a steroid-free immunosuppression regimen and transplantation of a mean islet mass of 11,000 islet equivalents per kilogram, which significantly improved 1-year outcomes. Although the results of a 5-year follow-up in 65 patients demonstrated improvement in glycemic instability in a significant portion of them, only 7.5% of the patients have reached insulin independence, indicating the need of further advances in the preservation of the function of transplanted islet. In addition to the scarcity of organs available for transplantation, islets transplantation still faces major challenges, specially those related to cell loss during the process of islet isolation and the losses related to the graft site, apoptosis, allorejection, autoimmunity, and immunosuppression. The main strategies to optimize islet transplantation aim at improving all these aspects. Conclusion Human islet transplantation should be regarded as an intervention that can decrease the frequency of severe hypoglycemic episodes and improve glycemic control in selected patient for whom benefits of 4-5 years duration would be very valuable. Its limitations, however, indicate that the procedure in its current format is not suitable for all patients with type 1 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporotic bone marrow defect of the jaws has been reported as a poorly demarcated radiolucency that affect mainly posterior mandible of middle-aged woman. The incidence of this condition is not exactly established and its pathogenesis remains unknown. An additional unusual case of osteoporotic bone marrow defects occurring bilaterally in the mandibular edentulous regions of a 32-year-old white woman is presented reinforcing its diagnostic criteria and histopathological findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The number of organ and tissue transplants has increased worldwide in recent decades. However, graft rejection, infections due to the use of immunosuppressive drugs and a shortage of graft donors remain major concerns. Carbon monoxide (CO) had long been regarded solely as a poisonous gas. Ultimately, physiological studies unveiled the endogenous production of CO, particularly by the heme oxygenase (HO)-1 enzyme, recognizing CO as a beneficial gas when used at therapeutic doses. The protective properties of CO led researchers to develop uses for it, resulting in devices and molecules that can deliver CO in vitro and in vivo. The resulting interest in clinical investigations was immediate. Studies regarding the CO/HO-1 modulation of immune responses and their effects on various immune disorders gave rise to transplantation research, where CO was shown to be essential in the protection against organ rejection in animal models. This review provides a perspective of how CO modulates the immune system to improve transplantation and suggests its use as a therapy in the field.