64 resultados para MYOCARDIAL REVASCULARIZATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Acute respiratory failure is present in 5% of patients with acute myocardial infarction and is responsible for 20% to 30% of the fatal post-acute myocardial infarction. The role of inflammation associated with pulmonary edema as a cause of acute respiratory failure post-acute myocardial infarction remains to be determined. We aimed to describe the demographics, etiologic data and histological pulmonary findings obtained through autopsies of patients who died during the period from 1990 to 2008 due to acute respiratory failure with no diagnosis of acute myocardial infarction during life. METHODS: This study considers 4,223 autopsies of patients who died of acute respiratory failure that was not preceded by any particular diagnosis while they were alive. The diagnosis of acute myocardial infarction was given in 218 (4.63%) patients. The age, sex and major associated diseases were recorded for each patient. Pulmonary histopathology was categorized as follows: diffuse alveolar damage, pulmonary edema, alveolar hemorrhage and lymphoplasmacytic interstitial pneumonia. The odds ratio of acute myocardial infarction associated with specific histopathology was determined by logistic regression. RESULTS: In total, 147 men were included in the study. The mean age at the time of death was 64 years. Pulmonary histopathology revealed pulmonary edema as well as the presence of diffuse alveolar damage in 72.9% of patients. Bacterial bronchopneumonia was present in 11.9% of patients, systemic arterial hypertension in 10.1% and dilated cardiomyopathy in 6.9%. A multivariate analysis demonstrated a significant positive association between acute myocardial infarction with diffuse alveolar damage and pulmonary edema. CONCLUSIONS: For the first time, we demonstrated that in autopsies of patients with acute respiratory failure as the cause of death, 5% were diagnosed with acute myocardial infarction. Pulmonary histology revealed a significant inflammatory response, which has not previously been reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Chagas' disease has spread throughout Latin America because of the high rate of migration among these countries. Approximately 30% of Chagas' patients will develop cardiomyopathy, and 10% of these will develop severe cardiac damage leading to heart failure. Beta-blockade improves symptoms and survival in heart failure patients; however, its efficacy has not been well established in Chagas' disease. We evaluated the role of carvedilol in cardiac remodeling and mortality in a Chagas' cardiomyopathy animal model. METHODS: We studied Trypanosoma cruzi infection in 55 Syrian hamsters that were divided into three groups: control (15), infected (20), and infected + carvedilol (20). Animals underwent echocardiography, electrocardiography, and morphometry for collagen evaluation in ventricles stained with picrosirius red. RESULTS: The left ventricular diastolic diameter did not change between groups, although it was slightly larger in infected groups, as was left ventricular systolic diameter. Fractional shortening also did not change between groups, although it was slightly lower in infected groups. Collagen accumulation in the interstitial myocardial space was significantly higher in infected groups and was not attenuated by carvedilol. The same response was observed in the perivascular space. The survival curve showed significantly better survival in the control group compared with the infected groups; but no benefit of carvedilol was observed during the study. However, in the acute phase (up to 100 days of infection), carvedilol did reduce mortality. CONCLUSION: Carvedilol did not attenuate cardiac remodeling or mortality in this model of Chagas' cardiomyopathy. The treatment did improve survival in the acute phase of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early Diagnosis of Miocardial Dysfunction in Patients with Hematological Malignancies Submitted to Chemotherapy. Preliminary Background: Considering the current diagnostic improvements and tl1erapeutic approaches, patients witl 1 cancer can now be healed or keep the disease under control, still, the chemotherapy may cause heart damage, evolving to Congestive Heart Failure. Recognition of those changes increases the chances of control the endpoints; hence, new parameters of cardiac and fluid mechanics analysis have been used to assess the myocardial function, pursuing an earlier diagnosis of the cardiac alterations. This study aimed to detect early cardiac dysfunction consequently to chemotherapy in patients with hematological malignancies (HM). Methods: Patients with leukemia and lymphoma, submitted to chemotherapy, without knowing heart diseases were studied. Healthy volunteers served as the control group. Conventional 2DE parameters of myocardial function were analyzed. The peak global longitudinal, circumferential and radial left ventricular (LV) strain were deternined by 2D and 3D speckle tracking (STE); peak area strain measured by 3D STE and LV torsionn, twisting rate, recoil / recoil rate assessed by 2D STE. The LV vortex formation time (VFT) during the rapid diastolic filling was estimated by the 2D mitral valve (MV) planimetry and Pulsed Doppler LV inflow by: VFT- 4(1-β) / π x α3 x LVEF Where 1- β is the E wave contribution to the LV stroke volume and α3 is a volumetric variable related to the MV area. The statistical level was settled on 5%. Results: See Table. Conclusion: Despite the differences between the two groups concerning the LVESV, LVEF and E´, those parameters still are in the normal range when considering the patients submitted to chemotherapy; thus, in the clinical setting, they are not so noticeable. The 3D GLS was smaller among the patients, oppositely to the 2D GLS, suggesting that the former variable is more accurate to assess tlhe LV systolic function. The VFT is a dimensionless measure of the optimal vortex development inside the LV chamber; reflecting the efficiency of the diastolic filling and, consequently, blood ejection. This index showed to be diminished in patients with HM submitted to chemotherapy, indicating an impairment of the in1pulse and thrust, hence appearing to be a very early marker of diastolic and systolic dysfunction in this group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Ischemia and reperfusion (IR) injury remains a major cause of morbidity and mortality and multiple molecular and cellular pathways have been implicated in this injury. We determined whether acute inhibition of excessive mitochondrial fission at the onset of reperfusion improves mitochondrial dysfunction and cardiac contractility postmyocardial infarction in rats. METHODS AND RESULTS: We used a selective inhibitor of the fission machinery, P110, which we have recently designed. P110 treatment inhibited the interaction of fission proteins Fis1/Drp1, decreased mitochondrial fission, and improved bioenergetics in three different rat models of IR, including primary cardiomyocytes, ex vivo heart model, and an in vivo myocardial infarction model. Drp1 transiently bound to the mitochondria following IR injury and P110 treatment blocked this Drp1 mitochondrial association. Compared with control treatment, P110 (1 μmol/L) decreased infarct size by 28 ± 2% and increased adenosine triphosphate levels by 70+1% after IR relative to control IR in the ex vivo model. Intraperitoneal injection of P110 (0.5 mg/kg) at the onset of reperfusion in an in vivo model resulted in improved mitochondrial oxygen consumption by 68% when measured 3 weeks after ischemic injury, improved cardiac fractional shortening by 35%, reduced mitochondrial H2O2 uncoupling state by 70%, and improved overall mitochondrial functions. CONCLUSIONS: Together, we show that excessive mitochondrial fission at reperfusion contributes to long-term cardiac dysfunction in rats and that acute inhibition of excessive mitochondrial fission at the onset of reperfusion is sufficient to result in long-term benefits as evidenced by inhibiting cardiac dysfunction 3 weeks after acute myocardial infarction.