50 resultados para pp cross-section
Resumo:
We include the dynamics of the angular straggling process in the angular distributions of Mott scattering of heavy ions. We model the passage of an incoming nucleus through a target as a diffusion process. It is then possible to derive a simple and physically transparent expression for the angular dispersion due to the straggling. The angular dispersion should be folded with the theoretical Mott cross section to see its effect on the amplitude of the Mott oscillations. Our results agree very well with data of Pb-208 + Pb-208 scattering. We define the "classical" limit as the limit when the angular dispersion due to straggling becomes comparable with the Mott oscillation period and get the disappearance of quantum interference occurring at the limit 0.050 root xi Z(4)/E-3/2 >= 1, where xi stands for the target thickness, Z is the system's charge, and E is the center-of-mass energy. The experiments on lead are very close to this limit. We show that the kinematical correlations due to the identity of the particles is maintained, as it should be, and the action of the environment is to reduce the fringe visibility.
Resumo:
The P-T-differential inclusive production cross section of the prompt charm-strange meson D-s(+) in the rapidity range vertical bar y vertical bar < 0.5 was measured in proton-proton collisions at root s = 7 TeV at the LHC using the ALICE detector. The analysis was performed on a data sample of 2.98 x 10(8) events collected with a minimum-bias trigger. The corresponding integrated luminosity is L-int = 4.8 nb(-1). Reconstructing the decay D-s(+) -> phi pi(+) with phi -> K-K+, and its charge conjugate, about 480 D-s(+/-) mesons were counted, after selection cuts, in the transverse momentum range 2 < P-T < 12 GeV/c. The results are compared with predictions from models based on perturbative QCD. The ratios of the cross sections of four D meson species (namely D-0, D+, D*+ and D-s(+)) were determined both as a function of p(T) and integrated over p(T)after extrapolating to full p(T) range, together with the strangeness suppression factor in charm fragmentation. The obtained values are found to be compatible within uncertainties with those measured by other experiments in e(+)e(-), ep and pp interactions at various centre-of-mass energies. (C) 2012 CERN. Published by Elsevier By. All rights reserved.
Resumo:
The production of the prompt charm mesons D-0, D+, D*(+), and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at the LHC, at a centre-of-mass energy root s(NN) = 2.76 TeV per nucleon-nucleon collision. The p(t)-differential production yields in the range 2 < p(t) < 16 GeV/c at central rapidity, vertical bar y vertical bar < 0.5, were used to calculate the nuclear modification factor R-AA with respect to a proton-proton reference obtained from the cross section measured at root s = 7 TeV and scaled to root s = 2.76 TeV. For the three meson species, R-AA shows a suppression by a factor 3-4, for transverse momenta larger than 5 GeV/c in the 20% most central collisions. The suppression is reduced for peripheral collisions.
Resumo:
Experimental and theoretical studies on the two-photon absorption properties of two oxazole derivatives: 2,5-diphenyloxazole (PPO) and 2-(4-biphenylyI)-5-phenyl-1,3,4-oxadiazole (PBD) are presented. The two-photon absorption cross-section spectra were determined by means of the Z-scan technique, from 460 up to 650 nm, and reached peak values of 84 GM for PBD and 27 GM for PPO. Density Functional Theory and response function formalism are used to determine the molecular structures and the one- and two-photon absorption properties and to assist in the interpretation of the experimental results. The Polarizable Continuum Model in one-photon absorption calculations is used to estimate solvent effects. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A new method for analysis of scattering data from lamellar bilayer systems is presented. The method employs a form-free description of the cross-section structure of the bilayer and the fit is performed directly to the scattering data, introducing also a structure factor when required. The cross-section structure (electron density profile in the case of X-ray scattering) is described by a set of Gaussian functions and the technique is termed Gaussian deconvolution. The coefficients of the Gaussians are optimized using a constrained least-squares routine that induces smoothness of the electron density profile. The optimization is coupled with the point-of-inflection method for determining the optimal weight of the smoothness. With the new approach, it is possible to optimize simultaneously the form factor, structure factor and several other parameters in the model. The applicability of this method is demonstrated by using it in a study of a multilamellar system composed of lecithin bilayers, where the form factor and structure factor are obtained simultaneously, and the obtained results provided new insight into this very well known system.