48 resultados para intermittent


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract : Introduction Mediastinal masses in pediatric patients are very heterogeneous in origin and etiology. In the first decade of life, 70% of the mediastinal masses are benign whereas malignant tumors are more frequent in the second decade of life. Among the mediastinal masses, lymph nodes are the most common involved structures and could be enlarged due to a lymphoma, leukemia, metastatic disease, or due to infectious diseases as sarcoidosis, tuberculosis and others. Case presentation. We report a case of a 13-year-old Caucasian girl who came to the emergency room with a history of intermittent fever, weight loss and night sweating for at least 1 month. A radiologic image work-up presented an anterior and posterior mediastinal mass. The 18F-fluorodeoxyglucose positron emission tomography presented a high maximum standard uptake value, which directed our decision for mediastinal biopsy for diagnostic elucidation. Histologic examination described the mass as granulomatous tuberculosis. The patient was treated with anti-tuberculosis therapy and developed a full clinical recovery. Conclusions . The present case report demonstrates that a bulky mediastinal lymphadenopathy detected on 18F-fluorodeoxyglucose positron emission tomography is not always a malignant lesion, and in countries where tuberculosis is endemic, this etiology should not be forgotten during clinical investigations. There is a need for more accurate cut-off values for this technology; meanwhile, the further investigation of patients with bulky mediastinal masses with procedures such as the open biopsy is indispensable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particle tracking of microbeads attached to the cytoskeleton (CSK) reveals an intermittent dynamic. The mean squared displacement (MSD) is subdiffusive for small Δt and superdiffusive for large Δt, which are associated with periods of traps and periods of jumps respectively. The analysis of the displacements has shown a non-Gaussian behavior, what is indicative of an active motion, classifying the cells as a far from equilibrium material. Using Langevin dynamics, we reconstruct the dynamic of the CSK. The model is based on the bundles of actin filaments that link themself with the bead RGD coating, trapping it in an harmonic potential. We consider a one- dimensional motion of a particle, neglecting inertial effects (over-damped Langevin dynamics). The resultant force is decomposed in friction force, elastic force and random force, which is used as white noise representing the effect due to molecular agitation. These description until now shows a static situation where the bead performed a random walk in an elastic potential. In order to modeling the active remodeling of the CSK, we vary the equilibrium position of the potential. Inserting a motion in the well center, we change the equilibrium position linearly with time with constant velocity. The result found exhibits a MSD versus time ’tau’ with three regimes. The first regime is when ‘tau’ < ‘tau IND 0’, where ‘tau IND 0’ is the relaxation time, representing the thermal motion. At this regime the particle can diffuse freely. The second regime is a plateau, ‘tau IND 0’ < ‘tau’ < ‘tau IND 1’, representing the particle caged in the potential. Here, ‘tau IND 1’ is a characteristic time that limit the confinement period. And the third regime, ‘tau’ > ‘tau IND 1’, is when the particles are in the superdiffusive behavior. This is where most of the experiments are performed, under 20 frames per second (FPS), thus there is no experimental evidence that support the first regime. We are currently performing experiments with high frequency, up to 100 FPS, attempting to visualize this diffusive behavior. Beside the first regime, our simple model can reproduce MSD curves similar to what has been found experimentally, which can be helpful to understanding CSK structure and properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute kidney injury (AKI) is classically described as a rapid loss of kidney function. AKI affects more than 15% of all hospital admissions and is associated with elevated mortality rates. Although many advances have occurred, intermittent or continuous renal replacement therapies are still considered the best options for reversing mild and severe AKI syndrome. For this reason, it is essential that innovative and effective therapies, without side effects and complications, be developed to treat AKI and the end-stages of renal disease. Mesenchymal stem cell (MSC) based therapies have numerous advantages in helping to repair inflamed and damaged tissues and are being considered as a new alternative for treating kidney injuries. Numerous experimental models have shown that MSCs can act via differentiation-independent mechanisms to help renal recovery. Essentially, MSCs can secrete a pool of cytokines, growth factors and chemokines, express enzymes, interact via cell-to-cell contacts and release bioagents such as microvesicles to orchestrate renal protection. In this review, we propose seven distinct properties of MSCs which explain how renoprotection may be conferred: 1) anti-inflammatory; 2) pro-angiogenic; 3) stimulation of endogenous progenitor cells; 4) anti-apoptotic; 5) anti-fibrotic; 6) anti-oxidant; and 7) promotion of cellular reprogramming. In this context, these mechanisms, either individually or synergically, could induce renal protection and functional recovery. This review summarises the most important effects and benefits associated with MSC-based therapies in experimental renal disease models and attempts to clarify the mechanisms behind the MSC-related renoprotection. MSCs may prove to be an effective, innovative and affordable treatment for moderate and severe AKI. However, more studies need to be performed to provide a more comprehensive global understanding of MSC-related therapies and to ensure their safety for future clinical applications.