47 resultados para healthy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background We have searched if plasma high density lipoprotein-cholesterol (HDL-C) concentration interferes simultaneously with whole-body cholesterol metabolism and insulin sensitivity in normal weight healthy adult subjects. Methods We have measured the activities of several plasma components that are critically influenced by insulin and that control lipoprotein metabolism in subjects with low and high HDL-C concentrations. These parameters included cholesteryl ester transfer protein (CETP), phospholipid transfer protein (PLTP), lecithin cholesterol acyl transferase (LCAT), post-heparin lipoprotein lipase (LPL), hepatic lipase (HL), pre-beta-1HDL, and plasma sterol markers of cholesterol synthesis and intestinal absorption. Results In the high-HDL-C group, we found lower plasma concentrations of triglycerides, alanine aminotransferase, insulin, HOMA-IR index, activities of LCAT and HL compared with the low HDL-C group; additionally, we found higher activity of LPL and pre-beta-1HDL concentration in the high-HDL-C group. There were no differences in the plasma CETP and PLTP activities. Conclusions These findings indicate that in healthy hyperalphalipoproteinemia subjects, several parameters that control the metabolism of plasma cholesterol and lipoproteins are related to a higher degree of insulin sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: We evaluated the mechanisms involved in insulin-induced vasodilatation after acute resistance exercise in healthy rats. MAIN METHODS: Wistar rats were divided into 3 groups: control (CT), electrically stimulated (ES) and resistance exercise (RE). Immediately after acute RE (15 sets with 10 repetitions at 70% of maximal intensity), the animals were sacrificed and rings of mesenteric artery were mounted in an isometric system. After this, concentration-response curves to insulin were performed in control condition and in the presence of LY294002 (PI3K inhibitor), L-NAME (NOS inhibitor), L-NAME+TEA (K(+) channels inhibitor), LY294002+BQ123 (ET-A antagonist) or ouabain (Na(+)/K(+) ATPase inhibitor). KEY FINDINGS: Acute RE increased insulin-induced vasorelaxation as compared to control (CT: Rmax=7.3 ± 0.4% and RE: Rmax=15.8 ± 0.8%; p<0.001). NOS inhibition reduced (p<0.001) this vasorelaxation from both groups (CT: Rmax=2.0 ± 0.3%, and RE: Rmax=-1.2 ± 0.1%), while PI3K inhibition abolished the vasorelaxation in CT (Rmax=-0.1±0.3%, p<0.001), and caused vasoconstriction in RE (Rmax=-6.5 ± 0.6%). That insulin-induced vasoconstriction on PI3K inhibition was abolished (p<0.001) by the ET-A antagonist (Rmax=2.9 ± 0.4%). Additionally, acute RE enhanced (p<0.001) the functional activity of the ouabain-sensitive Na(+)/K(+) ATPase activity (Rmax=10.7 ± 0.4%) and of the K(+) channels (Rmax=-6.1±0.5%; p<0.001) in the insulin-induced vasorelaxation as compared to CT. SIGNIFICANCE: Such results suggest that acute RE promotes enhanced insulin-induced vasodilatation, which could act as a fine tuning to vascular tone.