48 resultados para Ventricular Function, Left


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Hand-carried ultrasound (HCU) devices have been demonstrated to improve the diagnosis of cardiac diseases over physical examination, and have the potential to broaden the versatility in ultrasound application. The role of these devices in the assessment of hospitalized patients is not completely established. In this study we sought to perform a direct comparison between bedside evaluation using HCU and comprehensive echocardiography (CE), in cardiology inpatient setting. Methods We studied 44 consecutive patients (mean age 54 ± 18 years, 25 men) who underwent bedside echocardiography using HCU and CE. HCU was performed by a cardiologist with level-2 training in the performance and interpretation of echocardiography, using two-dimensional imaging, color Doppler, and simple calliper measurements. CE was performed by an experienced echocardiographer (level-3 training) and considered as the gold standard. Results There were no significant differences in cardiac chamber dimensions and left ventricular ejection fraction determined by the two techniques. The agreement between HCU and CE for the detection of segmental wall motion abnormalities was 83% (Kappa = 0.58). There was good agreement for detecting significant mitral valve regurgitation (Kappa = 0.85), aortic regurgitation (kappa = 0.89), and tricuspid regurgitation (Kappa = 0.74). A complete evaluation of patients with stenotic and prosthetic dysfunctional valves, as well as pulmonary hypertension, was not possible using HCU due to its technical limitations in determining hemodynamic parameters. Conclusion Bedside evaluation using HCU is helpful for assessing cardiac chamber dimensions, left ventricular global and segmental function, and significant valvular regurgitation. However, it has limitations regarding hemodynamic assessment, an important issue in the cardiology inpatient setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Early Diagnosis of Miocardial Dysfunction in Patients with Hematological Malignancies Submitted to Chemotherapy. Preliminary Background: Considering the current diagnostic improvements and tl1erapeutic approaches, patients witl 1 cancer can now be healed or keep the disease under control, still, the chemotherapy may cause heart damage, evolving to Congestive Heart Failure. Recognition of those changes increases the chances of control the endpoints; hence, new parameters of cardiac and fluid mechanics analysis have been used to assess the myocardial function, pursuing an earlier diagnosis of the cardiac alterations. This study aimed to detect early cardiac dysfunction consequently to chemotherapy in patients with hematological malignancies (HM). Methods: Patients with leukemia and lymphoma, submitted to chemotherapy, without knowing heart diseases were studied. Healthy volunteers served as the control group. Conventional 2DE parameters of myocardial function were analyzed. The peak global longitudinal, circumferential and radial left ventricular (LV) strain were deternined by 2D and 3D speckle tracking (STE); peak area strain measured by 3D STE and LV torsionn, twisting rate, recoil / recoil rate assessed by 2D STE. The LV vortex formation time (VFT) during the rapid diastolic filling was estimated by the 2D mitral valve (MV) planimetry and Pulsed Doppler LV inflow by: VFT- 4(1-β) / π x α3 x LVEF Where 1- β is the E wave contribution to the LV stroke volume and α3 is a volumetric variable related to the MV area. The statistical level was settled on 5%. Results: See Table. Conclusion: Despite the differences between the two groups concerning the LVESV, LVEF and E´, those parameters still are in the normal range when considering the patients submitted to chemotherapy; thus, in the clinical setting, they are not so noticeable. The 3D GLS was smaller among the patients, oppositely to the 2D GLS, suggesting that the former variable is more accurate to assess tlhe LV systolic function. The VFT is a dimensionless measure of the optimal vortex development inside the LV chamber; reflecting the efficiency of the diastolic filling and, consequently, blood ejection. This index showed to be diminished in patients with HM submitted to chemotherapy, indicating an impairment of the in1pulse and thrust, hence appearing to be a very early marker of diastolic and systolic dysfunction in this group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renovascular hypertension induced by 2 Kidney-1 Clip (2K-1C) is a renin-angiotensin-system (RAS)-dependent model, leading to renal vascular rarefaction and renal failure. RAS inhibitors are not able to reduce arterial pressure (AP) and/or preserve the renal function, and thus, alternative therapies are needed. Three weeks after left renal artery occlusion, fluorescently tagged mesenchymal stem cells (MSC) (2×10(5) cells/animal) were injected weekly into the tail vein in 2K-1C hypertensive rats. Flow cytometry showed labeled MSC in the cortex and medulla of the clipped kidney. MSC prevented a further increase in the AP, significantly reduced proteinuria and decreased sympathetic hyperactivity in 2K-1C rats. Renal function parameters were unchanged, except for an increase in urinary volume observed in 2K-1C rats, which was not corrected by MSC. The treatment improved the morphology and decreased the fibrotic areas in the clipped kidney and also significantly reduced renal vascular rarefaction typical of 2K-1C model. Expression levels of IL-1β, TNF-α angiotensinogen, ACE, and Ang II receptor AT1 were elevated, whereas AT2 levels were decreased in the medulla of the clipped kidney. MSC normalized these expression levels. In conclusion, MSC therapy in the 2K-1C model (i) prevented the progressive increase of AP, (ii) improved renal morphology and microvascular rarefaction, (iii) reduced fibrosis, proteinuria and inflammatory cytokines, (iv) suppressed the intrarenal RAS, iv) decreased sympathetic hyperactivity in anesthetized animals and v) MSC were detected at the CNS suggesting that the cells crossed the blood-brain barrier. This therapy may be a promising strategy to treat renovascular hypertension and its renal consequences in the near future.