54 resultados para SYMPATHETIC CHEMOREFLEX
Resumo:
Background: Intralipid (R) and heparin infusion results in increased blood pressure and autonomic abnormalities in normal and hypertensive individuals. Objective: To evaluate insulin sensitivity and the impact of Intralipid (R) and heparin (ILH) infusion on hemodynamic, metabolic, and autonomic response in patients with the indeterminate form of Chagas' disease. Methods: Twelve patients with the indeterminate form of Chagas' disease and 12 healthy volunteers were evaluated. Results: Baseline blood pressure and heart rate were similar in both groups. Plasma noradrenaline levels were slightly increased in the Chagas' group. After insulin tolerance testing (ITT), a significant decline was noted in glucose in both groups. ILH infusion resulted in increased blood pressure in both groups, but there was no significant change in plasma noradrenaline. The low-frequency component (LF) was similar and similarly increased in both groups. The high-frequency component (HF) was lower in the Chagas' group. Conclusion: Patients with the indeterminate form of Chagas' disease had increased sympathetic activity at baseline and impaired response to insulin. They also had a lower high-frequency component and impaired baroreflex sensitivity at baseline and during Intralipid (R) and heparin infusion. (Arq Bras Cardiol 2012;98(3):225-233)
Resumo:
Stern JE, Sonner PM, Son SJ, Silva FC, Jackson K, Michelini LC. Exercise training normalizes an increased neuronal excitability of NTS-projecting neurons of the hypothalamic paraventricular nucleus in hypertensive rats. J Neurophysiol 107: 2912-2921, 2012. First published February 22, 2012; doi:10.1152/jn.00884.2011.-Elevated sympathetic outflow and altered autonomic reflexes, including impaired baroreflex function, are common findings observed in hypertensive disorders. Although a growing body of evidence supports a contribution of preautonomic neurons in the hypothalamic paraventricular nucleus (PVN) to altered autonomic control during hypertension, the precise underlying mechanisms remain unknown. Here, we aimed to determine whether the intrinsic excitability and repetitive firing properties of preautonomic PVN neurons that innervate the nucleus tractus solitarii (PVN-NTS neurons) were altered in spontaneously hypertensive rats (SHR). Moreover, given that exercise training is known to improve and/or correct autonomic deficits in hypertensive conditions, we evaluated whether exercise is an efficient behavioral approach to correct altered neuronal excitability in hypertensive rats. Patch-clamp recordings were obtained from retrogradely labeled PVN-NTS neurons in hypothalamic slices obtained from sedentary (S) and trained (T) Wistar-Kyoto (WKY) and SHR rats. Our results indicate an increased excitability of PVN-NTS neurons in SHR-S rats, reflected by an enhanced input-output function in response to depolarizing stimuli, a hyperpolarizing shift in Na+ spike threshold, and smaller hyperpolarizing afterpotentials. Importantly, we found exercise training in SHR rats to restore all these parameters back to those levels observed in WKY-S rats. In several cases, exercise evoked opposing effects in WKY-S rats compared with SHR-S rats, suggesting that exercise effects on PVN-NTS neurons are state dependent. Taken together, our results suggest that elevated preautonomic PVN-NTS neuronal excitability may contribute to altered autonomic control in SHR rats and that exercise training efficiently corrects these abnormalities.
Resumo:
Obesity is strongly associated with high blood pressure, dyslipidemia, and type 2 diabetes. These conditions synergistically increase the risk of cardiovascular events. A number of central and peripheral abnormalities can explain the development or maintenance of high blood pressure in obesity. Of great interest is endothelial dysfunction, considered to be a primary risk factor in the development of hypertension. Additional mechanisms also related to endothelial dysfunction have been proposed to mediate the development of hypertension in obese individuals. These include: increase in both peripheral vasoconstriction and renal tubular sodium reabsorption, increased sympathetic activity and overactivation of both the renin-angiotensin system and the endocannabinoid system and insulin resistance. The discovery of new mechanisms regulating metabolic and vascular function and a better understanding of how vascular function can be influenced by these systems would facilitate the development of new therapies for treatment of obesity-associated hypertension.
Resumo:
Abstract Background: Oral health complications in diabetes and hypertension include decreased salivary secretion. The sodium-glucose cotransporter 1 (SGLT1) protein, which transports 1 glucose/2 Na+/264 H2O molecules, is described in salivary glands. We hypothesized that changes in SGLT1 expression in the luminal membrane of ductal cell may be related to an altered salivary flow. Findings: By immunohistochemistry, we investigated SGLT1 expression in ductal cells of parotid and submandibular glands from Wistar Kyoto rats (WKY), diabetic WKY (WKY-D), spontaneously hypertensive rats (SHR) and diabetic SHR (SHR-D), as well as in parotid glands from WKY subjected to sympathetic stimulation, with or without previous propranolol blockade. Diabetes and hypertension decreased the salivary secretion and increased SGLT1 expression in the luminal membrane of ductal cells, and their association exacerbated the regulations observed. After 30 min of sympathetic stimulation, SGLT1 increased in the luminal membrane of ductal cells, and that was blocked by previous injection of propranolol. Conclusions: SGLT1 expression increases in the luminal membrane of salivary gland ductal cells and the salivary flow decreases in diabetic and hypertensive rats, which may be related to sympathetic activity. This study highlights the water transporter role of SGLT1 in salivary glands, which, by increasing ductal water reabsorption, may explain the hyposalivation of diabetic and hypertensive subjects.
Resumo:
The rostral ventrolateral medulla (RVLM) contains the presympathetic neurons involved in cardiovascular regulation that has been implicated as one of the most important central sites for the antihypertensive action of moxonidine (an α2-adrenergic and imidazoline agonist). Here, we sought to evaluate the cardiovascular effects produced by moxonidine injected into another important brainstem site, the commissural nucleus of the solitary tract (commNTS). Mean arterial pressure (MAP), heart rate (HR), splanchnic sympathetic nerve activity (sSNA) and activity of putative sympathoexcitatory vasomotor neurons of the RVLM were recorded in conscious or urethane-anesthetized, and artificial ventilated male Wistar rats. In conscious or anesthetized rats, moxonidine (2.5 and 5 nmol/50 nl) injected into the commNTS reduced MAP, HR and sSNA. The injection of moxonidine into the commNTS also elicited a reduction of 28% in the activity of sympathoexcitatory vasomotor neurons of the RVLM. To further assess the notion that moxonidine could act in another brainstem area to elicit the antihypertensive effects, a group with electrolytic lesions of the commNTS or sham and with stainless steel guide-cannulas implanted into the 4th V were used. In the sham group, moxonidine (20 nmol/1 μl) injected into 4th V decreased MAP and HR. The hypotension but not the bradycardia produced by moxonidine into the 4th V was reduced in acute (1 day) commNTS-lesioned rats. These data suggest that moxonidine can certainly act in other brainstem regions, such as commNTS to produce its beneficial therapeutic effects, such as hypotension and reduction in sympathetic nerve activity.
Resumo:
Renovascular hypertension induced by 2 Kidney-1 Clip (2K-1C) is a renin-angiotensin-system (RAS)-dependent model, leading to renal vascular rarefaction and renal failure. RAS inhibitors are not able to reduce arterial pressure (AP) and/or preserve the renal function, and thus, alternative therapies are needed. Three weeks after left renal artery occlusion, fluorescently tagged mesenchymal stem cells (MSC) (2×10(5) cells/animal) were injected weekly into the tail vein in 2K-1C hypertensive rats. Flow cytometry showed labeled MSC in the cortex and medulla of the clipped kidney. MSC prevented a further increase in the AP, significantly reduced proteinuria and decreased sympathetic hyperactivity in 2K-1C rats. Renal function parameters were unchanged, except for an increase in urinary volume observed in 2K-1C rats, which was not corrected by MSC. The treatment improved the morphology and decreased the fibrotic areas in the clipped kidney and also significantly reduced renal vascular rarefaction typical of 2K-1C model. Expression levels of IL-1β, TNF-α angiotensinogen, ACE, and Ang II receptor AT1 were elevated, whereas AT2 levels were decreased in the medulla of the clipped kidney. MSC normalized these expression levels. In conclusion, MSC therapy in the 2K-1C model (i) prevented the progressive increase of AP, (ii) improved renal morphology and microvascular rarefaction, (iii) reduced fibrosis, proteinuria and inflammatory cytokines, (iv) suppressed the intrarenal RAS, iv) decreased sympathetic hyperactivity in anesthetized animals and v) MSC were detected at the CNS suggesting that the cells crossed the blood-brain barrier. This therapy may be a promising strategy to treat renovascular hypertension and its renal consequences in the near future.
Resumo:
Background Oral health complications in diabetes and hypertension include decreased salivary secretion. The sodium-glucose cotransporter 1 (SGLT1) protein, which transports 1 glucose/2 Na+/264 H2O molecules, is described in salivary glands. We hypothesized that changes in SGLT1 expression in the luminal membrane of ductal cell may be related to an altered salivary flow. Findings By immunohistochemistry, we investigated SGLT1 expression in ductal cells of parotid and submandibular glands from Wistar Kyoto rats (WKY), diabetic WKY (WKY-D), spontaneously hypertensive rats (SHR) and diabetic SHR (SHR-D), as well as in parotid glands from WKY subjected to sympathetic stimulation, with or without previous propranolol blockade. Diabetes and hypertension decreased the salivary secretion and increased SGLT1 expression in the luminal membrane of ductal cells, and their association exacerbated the regulations observed. After 30 min of sympathetic stimulation, SGLT1 increased in the luminal membrane of ductal cells, and that was blocked by previous injection of propranolol. Conclusions SGLT1 expression increases in the luminal membrane of salivary gland ductal cells and the salivary flow decreases in diabetic and hypertensive rats, which may be related to sympathetic activity. This study highlights the water transporter role of SGLT1 in salivary glands, which, by increasing ductal water reabsorption, may explain the hyposalivation of diabetic and hypertensive subjects
Resumo:
The paraventricular nucleus (PVN) of the hypothalamus plays an important role in the regulation of sympathetic nerve activity, which is significantly elevated in chronic heart failure (CHF). Fractalkine (FKN) and its cognate receptor, CX3CR1, are constitutively expressed in the central nervous system, but their role and physiological significance are not well known. The aims of the present study were to determine whether FKN plays a cardiovascular role within the PVN and to investigate how the actions of FKN might be altered in CHF. We show that both FKN and CX3CR1 are expressed on neurons in the PVN of rats, suggesting that they may have a physiological function in this brain nucleus. Unilateral microinjection of FKN directly into the PVN of anaesthetized rats elicited a significant dose-related decrease in blood pressure (1.0 nmol, -5 ± 3 mmHg; 2.5 nmol, -13 ± 2 mmHg; 5.0 nmol, -22 ± 3 mmHg; and 7.5 nmol, -32 ± 3 mmHg) and a concomitant increase in heart rate (1.0 nmol, 6 ± 3 beats min(-1); 2.5 nmol, 11 ± 3 beats min(-1); 5 nmol, 18 ± 4 beats min(-1); and 7.5 nmol, 27 ± 5 beats min(-1)) compared with control saline microinjections. In order to determine whether FKN signalling is altered in rats with CHF, we first performed quantitative RT-PCR and Western blot analysis and followed these experiments with functional studies in rats with CHF and sham-operated control rats. We found a significant increase in CX3CR1 mRNA and protein expression, as determined by quantitative RT-PCR and Western blot analysis, respectively, in the PVN of rats with CHF compared with sham-operated control rats. We also found that the blood pressure effects of FKN (2.5 nmol in 50 nl) were significantly attenuated in rats with CHF (change in mean arterial pressure, -6 ± 3 mmHg) compared with sham-operated control rats (change in mean arterial pressure, -16 ± 6 mmHg). These data suggest that FKN and its receptor, CX3CR1, modulate cardiovascular function at the level of the PVN and that the actions of FKN within this nucleus are altered in heart failure
Resumo:
A number of mechanisms have been proposed to explain the pleiotropic effect of statin therapy to reduce sympathetic outflow in cardiovascular disease. We tested the hypothesis that statin treatment could improve baroreflex gain-sensitivity triggered by morphological adaptations in the mechanoreceptor site, thus reducing sympathetic activity, regardless of arterial pressure (AP) level reduction. Male spontaneously hypertensive rats (SHR) were divided into control (SHR, n = 8) and SHR-simvastatin (5 mg/kg/day, for 7 days) (SHR-S, n = 8). After treatment, AP, baroreflex sensitivity (BRS) in response to AP-induced changes, aortic depressor nerve activity, and spectral analyses of pulse interval (PI) and AP variabilities were performed. Internal and external carotids were prepared for morphoquantitative evaluation. Although AP was similar between groups, sympathetic modulation, represented by the low frequency band of PI (SHR: 6.84 ± 3.19 vs. SHR-S: 2.41 ± 0.96 msec2) and from systolic AP variability (SHR: 3.95 ± 0.36 vs. SHR-S: 2.86 ± 0.18 mmHg2), were reduced in treated animals. In parallel, simvastatin induced an increase of 26% and 21% in the number of elastic lamellae as well as a decrease of 9% and 25% in the carotid thickness in both, external and internal carotid, respectively. Moreover, improved baroreceptor function (SHR: 0.78 ± 0.03 vs. SHR-S: 1.06 ± 0.04% mv/mmHg) was observed in addition to a 115% increase in aortic depressor nerve activity in SHR-S rats. Therefore, our data suggest that the reduction of sympathetic outflow in hypertension by simvastatin treatment may be triggered by structural changes in the carotid arteries and increased BRS in response to an improvement of the baroreceptors discharge and consequently of the afferent pathway of the baroreflex arch.