49 resultados para S. X. y P.
Resumo:
The ALICE Collaboration reports the measurement of the relative J/psi yield as a function of charged particle pseudorapidity density dN(ch)/d eta in pp collisions at root s = 7 TeV at the LHC. J/psi particles are detected for p(t) > 0, in the rapidity interval vertical bar y vertical bar < 0.9 via decay into e(+)e(-), and in the interval 2.5 < y < 4.0 via decay into mu(+)/mu(-) pairs. An approximately linear increase of the J/psi yields normalized to their event average (dN(J/psi)/dy)/(dN(J/psi)/dy) with (dN(ch)/c eta)/(dN(ch)/d eta) is observed in both rapidity ranges, where dN(ch)/d eta is measured within vertical bar eta vertical bar < 1 and p(t) > 0. In the highest multiplicity interval with (dN(ch)/d eta)(bin)) = 24.1, corresponding to four times the minimum bias multiplicity density, an enhancement relative to the minimum bias J/psi yield by a factor of about 5 at 2.5 < y <4 (8 at vertical bar y vertical bar < 0.9) is observed. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved.
Resumo:
Measurements of the anisotropy parameter v(2) of identified hadrons (pions, kaons, and protons) as a function of centrality, transverse momentum p(T), and transverse kinetic energy KET at midrapidity (vertical bar eta vertical bar < 0.35) in Au + Au collisions at root s(N N) = 200 GeV are presented. Pions and protons are identified up to p(T) = 6 GeV/c, and kaons up to p(T) = 4 GeV/c, by combining information from time-of-flight and aerogel Cerenkov detectors in the PHENIX Experiment. The scaling of v(2) with the number of valence quarks (n(q)) has been studied in different centrality bins as a function of transverse momentum and transverse kinetic energy. A deviation from previously observed quark-number scaling is observed at large values of KET/n(q) in noncentral Au + Au collisions (20-60%), but this scaling remains valid in central collisions (0-10%).
Resumo:
The ALICE experiment has measured low-mass dimuon production in pp collisions at root s = 7 TeV in the dimuon rapidity region 2.5 < y < 4. The observed dimuon mass spectrum is described as a superposition of resonance decays (eta, rho, omega, eta', phi) into muons and semi-leptonic decays of charmed mesons. The measured production cross sections for omega and phi are sigma(omega)(1 < p(t) < 5 GeV/c. 2.5 < y < 4) = 5.28 +/- 0.54(stat) +/- 0.49(syst) mb and sigma(phi)(1 < p(t) < 5 GeV/c. 2.5 < y < 4) = 0.940 +/- 0.084(stat) +/- 0.076(syst) mb. The differential cross sections d(2)sigma/dy dp(t) are extracted as a function of p(t) for omega and phi. The ratio between the rho and omega cross section is obtained. Results for the phi are compared with other measurements at the same energy and with predictions by models. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved.
Resumo:
Nanosized rare earth phosphovanadate phosphors (Y(P,V)O-4:Eu3+) have been prepared by applying the organic-inorganic polymeric precursors methodology. Luminescent powders with tetragonal structure and different vanadate concentrations (0%, 1%, 5%, 10%, 20%, 50%, and 100%, with regard to the phosphate content) were then obtained for evaluation of their structural and spectroscopic properties. The solids were characterized by scanning electron microscopy, X-ray diffractometry, vibrational spectroscopy (Raman and infrared), and electronic spectroscopy (emission, excitation, luminescence lifetimes, chromaticity, quantum efficiencies, and Judd-Ofelt intensity parameters). The solids exhibited very intense D-5(0) -> F-7(J) Eu3+ transitions, and it was possible to control the luminescent characteristics, such as excitation maximum, lifetime and emission colour, through the vanadium(V) concentration. The observed luminescent properties correlated to the characteristics of the chemical environments around the Eu3+ ions with respect to the composition of the phosphovanadates. The Eu3+ luminescence spectroscopy results indicated that the presence of larger vanadium(V) amounts in the phosphate host lattice led to more covalent and polarizable chemical environments. So, besides allowing for control of the luminescent properties of the solids, the variation in the vanadate concentration in the obtained YPO4:Eu3+ phosphors enabled the establishment of a strict correlation between the observable spectroscopic features and the chemical characteristics of the powders.